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Abstract

We present the Fast Greedy Equivalence Search (FGES)-Merge, a new method for
learning the structure of gene regulatory networks via merging locally learned Bayesian
networks, based on the fast greedy equivalent search algorithm. The method is
competitive with the state of the art in terms of the Matthews correlation coefficient,
which takes into account both precision and recall, while also improving upon it in
terms of speed, scaling up to tens of thousands of variables and being able to use
empirical knowledge about the topological structure of gene regulatory networks. We
apply this method to learning the gene regulatory network for the full human genome
using data from samples of different brain structures (from the Allen Human Brain
Atlas). Furthermore, this Bayesian network model should predict interactions between
genes in a way that is clear to experts, following the current trends in explainable
artificial intelligence. To achieve this, we also present a new open-access visualization
tool that facilitates the exploration of massive networks and can aid in finding nodes of
interest for experimental tests.

Introduction 1

With the advent of high-throughput measurement technologies in biology in the 1990s, 2

such as in situ hybridization [1] [2] or RNA microarrays [3], it has been possible to 3

collect information for tens of thousands of genes from every tissue sample or even at 4

the level of a single cell [4]. Since most of the information about the development and 5

function of every living being is codified in its genome, we can study the level of 6

expression of each gene in different conditions. This makes it possible to reconstruct the 7

underlying regulatory relationships between the genes and, therefore, get closer to 8

understanding their function [5] [6]. Due to the combinatorial nature of gene 9

regulation [7] and the size of the genome (which can have tens of thousands of genes), it 10

would be intractable to experimentally determine all of the regulatory links. Even 11

further, a complete model would have to take into account post-transcriptional 12

modifications. To solve this problem, many computational methods have been proposed 13

to infer the gene regulatory network (GRN) from expression data [8] [9]. The models 14

learned can then be used to guide biological research by letting researchers test the 15

interactions predicted by the network. The main objective of this paper is to present an 16

algorithm capable of reconstructing the GRN for the whole human genome using gene 17

expression data from the human brain to obtain a model that is accurate, easily 18

interpretable and capable of quantitative prediction of the levels of gene expression. To 19
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accomplish this, we first surveyed some of the most common methods for learning 20

GRNs and listed their main advantages and limitations. We decided to use Bayesian 21

networks (BNs) (BNs) [10] [11] due to their superior interpretability and then 22

subsequently present an algorithm, FGES-Merge, based on the fast greedy equivalence 23

search (FGES) method [12] that solves the usual problems that BNs have when dealing 24

with very large networks. Our contribution is adapting the model to cases with many 25

more variables and to the concrete topology of GRNs were some nodes are very densely 26

connected and violate the assumption of sparsity in previous algorithms. 27

To facilitate the use of our model as a research aid, we also present a new open-access 28

visualization tool, NeuroSuites-BNs, that can easily represent networks with tens of 29

thousands of genes and allows the user to focus on nodes of interest and graphically 30

perform the usual operations on BNs (introducing evidence, making probabilistic 31

inference, showing the parents, children and Markov blanket of any variable, etc.). 32

In the next section, we introduce the basic biological knowledge needed to formulate 33

the problem of reverse engineering a GRN and we will survey some of the most common 34

methods to solve it. We then emphasize the work done with BNs along with their main 35

advantages and limitations. Afterwards, we formulate the problem of learning and 36

visualizing a genome-wide GRN for the human brain and present our method for solving 37

it. Then, we show the results of applying our method to the DREAM5 GRN benchmark 38

and the Allen Human Brain Atlas dataset, including the visualization of the 39

reconstructed networks using FGES-Merge and Neurosuites-BNs. Finally, we present 40

our conclusions and possible improvements to the work. 41

Literature review 42

In this section, we will introduce the biological background to the problem of 43

reconstructing GRNs from data. Then, we will briefly summarize some of the most 44

important methods for learning GRNs. Finally, we will introduce BNs as the model of 45

choice for the problem at hand. discuss their theoretical background, previous work 46

done with BNs in the field and the main limitations we need to overcome to solve the 47

problem of inferring a full genome network from data for the human brain. 48

Genetics 49

One of the most important scientific advancements of the last century was the discovery 50

that all heritable information in a living organism is encoded biochemically and stored 51

in chromosomes, very long polymers of double stranded, helical DNA [13]. Information 52

stored in DNA can be dynamically read in a process that is also biochemically 53

consistent among most species. One of the DNA strands is transcribed into RNA, a 54

single stranded polymer of nucleic acids, which acts as an information carrier that is in 55

turn translated into proteins in ribosomes. Proteins are polymers of amino-acids that, 56

depending on the folding structure, can carry out almost all cellular functions. The flow 57

of information through the cell (see Fig. 1) is of the uttermost importance in biology 58

and has been named the central dogma of molecular biology [14]. One of the most 59

important facts about gene expression is that every RNA strand encodes one, and only 60

one, protein. This is because every triplet of nucleic acids in the RNA strand maps to a 61

unique amino-acid in a way that is consistent across species. This mapping is called the 62

genetic code [15]. 63

The full complexity of every living organism has to arise from the interactions 64

between these biochemical components. Therefore, there is a strong scientific interest in 65

understanding these interactions both to improve our fundamental understanding of 66

how life arises from biochemistry and because of the important practical applications in 67
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Fig 1. Flow of information in a cell. Diagram explaining the central dogma of
molecular biology. (Reverse transcription is very error prone and only seen in some
virus species.)

medicine and drug manufacturing. The main problem is that probing live cells to 68

measure interactions directly is incredibly difficult, so studying them directly is almost 69

out of the question. However, thanks to the genetic code, we can substitute the 70

questions about protein interactions with questions about the concentration of the 71

messenger RNA (mRNA) that encodes for each of the proteins. In addition, thanks to 72

advances in high-throughput sequencing technology during the last two decades, 73

measuring the abundances of different biochemical components (including mRNA) is 74

much more manageable, making it possible to do so at a very large scale for relatively 75

low cost. The abundances do not give us the full picture of the interactions, but this 76

trend in the availability of data has provided a powerful motivation to try to 77

computationally reconstruct the interaction structure that underlies gene expression. 78

These structures are called GRNs, and their reconstruction is one of the central efforts 79

in the field of systems biology. 80

Data collection 81

As mentioned in the previous section, direct measurements of interactions at the cellular 82

level are almost impossible and direct measurement of the protein products requires a 83

very complex analysis pipeline which makes it less efficient than using transcriptomic 84

measurements [16]. Microarrays and in situ hybridization (ISH) are the most common 85

methods used to collect data. Microarrays are an older method that works by lining a 86

chip with microprobes that puncture a biological sample and take a sample of the 87

cytoplasm. Each probe in the array is lined with the complementary chain to the RNA 88

we want to detect (a different one in each probe) in such a way that after washing out 89

the array, only the bound RNA will be found in each probe. The bonding strands are 90

made to induce a fluorescent molecule to emit light when bound so that each probe will 91

emit light corresponding to the amount of binding RNA found in the sample. Via 92

calibration, the level of light measured at each point on the chip can be mapped to a 93

concentration level for the bound gene. The main limitations of microarrays are that we 94
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can only measure known transcripts (since the complementary strand has to be designed 95

onto the chip) and that the microarrays give a measurement of the population of cells in 96

the tissue sample. Since there might be many different cell types in the population, the 97

measurement may not be representative of any single one of them. ISH is a newer 98

method that consists of taking a sample of cytoplasm from a single cell, filtering to keep 99

only mRNA and reverse transcribing the mRNA into DNA. Finally, PCR is used to 100

amplify the DNA in the sample up to a level where it can be more precisely measured. 101

By knowing the value of the amplification factor, we can then estimate the original level 102

of RNA in the cell. Therefore, microarrays give an average expression level for the tissue 103

sample, while ISH can give accurate, single-cell measurements [17]. 104

This paper uses the Allen Human Brain Atlas dataset [18], which was mainly created 105

using microarrays. Although there were also some ISH data available, they was not 106

complete, and we decided not to include them to avoid the problems inherent in mixing 107

two data sources (especially since we did not have ISH data for all areas of the brain). 108

Genetic regulation 109

The processes that regulate which genes are expressed and how much of the protein is 110

synthesized are the topic of study of genetic regulation. In general, we are interested in 111

seeing how different environmental conditions (internal or external) change the amount 112

by which each protein is synthesized. Gene expression can change due to hormonal 113

responses, any physical or chemical changes in the external environment, internal 114

chemical changes, or the expression of other genes. The whole process of gene regulation 115

is thus combinatorial, taking into account many factors for each gene. The process is 116

dynamic, since it is always responding to environmental changes and feedback (usually 117

negative), and stochastic, since even under the same conditions, we can only say that 118

the level of expression will also be similar due to the imperfections of biological 119

processes and the inherent instability of chemical processes. 120

Although the most correct model we have for the behaviour of gene expression is a 121

system of stochastic partial differential equations [19], this model is generally 122

intractable for the study of even the simplest of organisms if we are interested in more 123

than a few tens of genes. One common way of simplifying the model into one that is 124

usually good enough is to assume that all regulations can be modelled as genetic 125

interactions. This means that we assume that any non-genetic factor (hormones, 126

temperature, chemical changes in the environment, etc.) will not have an effect on the 127

level of expression of genes except indirectly, via mediation by another gene. In this way, 128

we can eliminate all external factors from our model and be left with only interactions 129

between genes. This network structure of interactions is the GRN. In this work, we will 130

make the additional, very common assumption [6] of taking the steady-state expression 131

level which means we will work with static instead of dynamic models. 132

GRNs and their properties 133

We are interested in both the topology of the network to see the interactions between 134

genes and in accurately predicting changes in the level of expression of some genes given 135

other changes in the level of other genes. In this section, we will briefly discuss the 136

mathematical formalisms required to properly define these GRNs, some of the most 137

important biological properties that can be used to constrain the space of possible 138

structures and the multiple available methods for learning them. 139
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Notation 140

For the representation of a GRN, we will use a directed or undirected graph G 141

(depending on the method). G is a pair (V,E), where V is the finite set of vertices or 142

nodes indexed by I and E is a subset of I × I, with element (i, j) indicating an edge 143

between nodes i and j. If the network is undirected, then the set of edges is symmetric 144

under swapping the indices of its members, that is, (i, j) ∈ E ⇐⇒ (j, i) ∈ E. 145

In the context of GRNs, the set of nodes is always associated one-to-one with the set 146

of genes. Edges are interpreted as relationships between genes, but the precise definition 147

of the relationship will depend on the mathematical model being used. Nevertheless, the 148

topological structure of the network is useful by itself, as it gives a visual intuition of 149

the interactions at play. Some facts we can know just from the structure are the 150

presence or absence of hubs, which are nodes with a higher than average number of 151

edges attached, and the density of the network, which is the ratio of edges per node. We 152

can also calibrate the structure with known relationships by checking if correct edges 153

exist between the correct nodes. 154

Most models will add more information to the network, both to the nodes (usually a 155

base level of expression, but sometimes more parameters, e.g., the standard deviation in 156

a Gaussian BN; see below) and to the edges (e.g., regression coefficients and pairwise 157

correlations). This information will be used to predict the changes in the level of 158

expression along the network and to estimate the strength of relationships between 159

genes. 160

We will be learning the GRNs from a dataset D = {x(1), ...,x(N)} where 161

x(i) = (x
(i)
1 , ..., x

(i)
G ) ∈ RG, i = 1, ..., N , with N the number of measurements and G the 162

number of genes. 163

Topological properties of GRNs 164

Some of the most important information we can extract from the topology of the 165

network is the degree distribution, which is given by the number of edges attached to 166

each node of the network. In the case of directed networks, we can further distinguish 167

between the in-degree and out-degree, which relate to the number of edges going into or 168

out of each node, respectively. This information can be either compared to the known 169

properties of real GRNs to see if the methods are working correctly or used beforehand 170

to restrict the space of structures that will be searched over. 171

For a more in-depth overview of the topological properties of GRNs see [7], [20] 172

and [21]. We will summarize these properties here: 173

• GRNs are locally dense but globally sparse: GRNs have a small number of edges 174

compared with a fully connected network. The maximum number of edges would 175

be G 2 (if we allow for self-edges). The actual number of edges in a GRN varies 176

depending on the network but is typically O(G) with a small ( 10) constant. This 177

means that the network is sparse. However, the degree distribution of the GRN is 178

very fat tailed such that instead of finding that most nodes have one edge, we find 179

many with no edges and hubs with many edges. This means that the connected 180

components of the network are dense, but there are many disconnected 181

components that make the network sparse. This translates to a limited number of 182

edges in the network, and although it seems like it should make the problem more 183

tractable, it is very problematic for many learning methods that require sparsity 184

since, to the best of our knowledge, they usually require local sparsity. 185

• The in-degree distribution is a Laplace distribution with an upper limit: The 186

in-degree of a node in a GRN is the number of regulators a gene has. This number 187

is usually small since most genes require just one regulatory factor, although it 188
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can be higher in more complex processes that need multiple conditions to be met 189

at the same time. However, there is a physical restriction on the number of 190

regulators. In the case of transcription factors, the only way they can affect the 191

expression of a gene is to be physically close to that gene, affecting the DNA 192

directly. Since there is limited space around each gene, there can only be a limited 193

number of transcription factors and thus a limited number of regulators. This 194

number is lower in prokaryotes than in eukaryotes, since there are other 195

mechanisms in eukaryotes that can be affected from a distance (e.g., histone 196

coiling). This translates to an upper bound to the number of parents for each 197

node. 198

• The out-degree distribution is scale-free distributed at the upper tail: Since the 199

degree distribution is fat-tailed and the in-degree distribution is bounded, the 200

out-degree distribution must also be fat-tailed. The nodes at the tail of the 201

out-degree distribution are hubs of the network, and the biological interpretation 202

is that they are regulators of transcription (transcription factors) used in many 203

processes at the same time. Biologically, this is due to hubs being more 204

evolutionarily stable. Any useful adaptation can be constructed on top of already 205

existing regulatory machinery, which is easier than having a new regulatory 206

network emerge simultaneously with the new adaptation. 207

Methods for learning GRNs 208

Now that we have discussed some basics of the structure and notation used in the field 209

of learning GRNs we will dedicate this section to summarizing the different existing 210

approaches for the task of reconstruction with a brief explanation of some of the most 211

important methods and current work. For a more in-depth review see [6]. We will also 212

emphasize the advantages and disadvantages of each method and explain why, in the 213

end, we decided to work with BNs. We will not address some more complex methods 214

that involve combinations of multiple approaches or methods for modelling dynamic 215

GRNs. A recent review of these methods can be found in [22]. 216

Basic statistical methods 217

This first group of methods is based on basic statistical methods that can be used to 218

measure dependencies between variables. They start from a fully connected network 219

and then associate a weight to each edge. The output can then be thresholded to obtain 220

a reasonable approximation of the topology of the network. The main advantage of 221

these methods is that they use very common statistical techniques and so are readily 222

available and computationally cheap. They are also reasonably accurate in finding the 223

network topology which makes them some of the most popular. 224

Correlation networks These methods are based on calculating the pairwise Pearson 225

correlation (although other measures are possible) between all pairs of genes. For two 226

random variables, X and Y , the pairwise Pearson correlation is given by their 227

covariance normalized by the product of their variances: 228

ρij =
E [(Xi − E(Xi))(Xj − E(Xj))]

Var(Xi)Var(Xj)
(1)

We can estimate the pairwise correlation between the columns of our dataset D to 229

obtain a correlation matrix, C ∈ RG×G. This matrix is used to assign a weight to each 230

of the edges of the network. Then, we can apply a threshold to the absolute value of the 231
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correlation that will depend on the level of sparsity we want to obtain for the GRN 232

structure. Since the correlation is symmetric, the network will be undirected. 233

The advantages of this method are that the complexity is only linear in the number 234

of instances and quadratic in the number of genes which makes it very popular for 235

genome-wide or other massive studies. The underlying biological assumption is that 236

genes with interacting regulation should have correlated expression. This is plausible, 237

and correlation methods are consistently reliable [23]. The main limitations of 238

correlation networks are that they fail to distinguish between direct and indirect 239

regulation, they do not capture nonlinear interactions well, they are undirected and they 240

are not predictive. Thus, they cannot distinguish between direct and indirect regulation 241

since if gene A regulates gene B, which in turn regulates gene C, it is very likely that 242

the correlation between A and C will be high, which would be detected as A directly 243

interacting with C. This is worsened by the presence of hubs in GRNs since all children 244

of a single hub (in the true GRN) will be correlated to each other and to the hub, 245

making it truly difficult to discern which of them is the true regulator. Furthermore, 246

the lack of direction makes it hard in general to distinguish the regulator from the 247

regulated genes. In addition, using the Pearson correlation, which is linear, can fail to 248

capture more complex types of interaction (even though this is not usually a problem in 249

practice). Finally, correlation networks are not predictive since correlation is just a 250

statistical measure of association and therefore cannot be used to make quantitative 251

predictions about expression levels. 252

Mutual information networks As a way to relax the assumption of linearity 253

implicit in correlation networks some methods apply an alternative measure based on 254

information theory. They use mutual information (MI) in the same way correlation was 255

used in the previous method. Let Xi and Xj be two discrete random variables and let 256

P (Xi, Xj) be their joint probability distribution. The MI between the two random 257

variables is defined as: 258

MI[Xi, Xj ] =
∑
xi,xj

P (Xi = xi, Xj = xj) log
P (Xi = xi, Xj = xj)

P (Xi = xi)P (Xj = xj)
(2)

where xi and xj are the values that Xi and Xj can take, respectively, and P (Xi) and 259

P (Xj) are the marginal probability distributions of Xi and Xj . MI[Xi, Xj ] is zero when 260

Xi and Xj are independent. 261

The main idea behind MI-based methods is to estimate the probability distributions 262

from the data and then calculate the MI for each pair of genes. The resulting MI matrix 263

gives a score to each edge in the fully connected network which will be undirected. This 264

can be thresholded to obtain a so called relevance network [24]. Some of the most 265

popular methods are ARACNE (the most basic) [25], CLR [26], which adds a step to 266

ARACNE to try to reject spurious correlations and indirect influences, and 267

MRNET [27], which takes a maximum relevance, minimum redundancy approach. 268

The advantage of MI networks is that they are almost as computationally cheap as 269

correlation networks while being able to capture nonlinear relationships. The main 270

drawbacks are that, again, they do not offer a predictive framework, that the estimation 271

of the probability distributions will be highly sensitive to noise in the samples when the 272

sample size is small and that they overestimate the relationships since they cannot 273

distinguish between direct or indirect regulation. 274

Regression networks The previous methods use basic statistical measures to 275

compute the dependencies between genes. A different way to approach the problem is to 276

try to predict the expression level of one gene given the remaining genes. One obvious 277

way to do this is with a regression model, the simplest of which would be a linear 278
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regression model. In the context of GRNs, the model would be learned by regressing 279

each gene in turn against all others and the coefficient for each gene in the regression 280

would be used as the weight for the edges of the network. That is, each gene’s 281

expression level Xi is given by: 282

Xi =
G∑
j 6=i
j=1

wjiXj + εi (3)

where εi is a noise term. Solving the regression problem would give the weight wji 283

associated with the edge from gene Xj to Xi. Note that unlike previous methods, 284

regression-based networks are directed (and can even have bidirectional edges). As in 285

the other methods, a threshold can be applied to the weights of the edges to prune the 286

network. 287

Regression-based methods are generally very powerful since they provide both a 288

structure for the network and a model that can predict gene expression. They were 289

considered to be the state of the art in the last DREAM (Dialogue for Reverse 290

Engineering of Models) challenge [28]. In particular, TIGRESS [29] uses a linear 291

regression method with L1 regularization to force some of the wji to be zero which 292

avoids using an arbitrary threshold. Another variation on this theme is GENIE3, which 293

was also used in the DREAM5 challenge, and uses random forest regression to make the 294

method more flexible and non-parametric. This method was first presented in [30], and 295

then improved in [31] and [32]. 296

Regression models are only slightly more computationally intensive than the 297

previous methods and can, theoretically, recognize indirect dependencies between genes 298

and assign lower coefficients to them. In practice, however, regression models tend to 299

fail with limited data, since the highly correlated real structure of gene expression 300

causes regression networks (even when regularized) to give spurious results in the same 301

way as correlation and MI networks. 302

Deep learning methods 303

Currently, we can also find deep learning methods that outperform linear 304

regression-based methods for inferring gene expression [33]. However, there are two 305

downsides to these approaches: they require a large amount of data, which is not always 306

easily available, and they do not give the structure of the network, merely a black box 307

approach to the inference problem. However, even if they outperform the other methods, 308

since we are interested in the structure of the network and do not have an abundance of 309

data for the problems we wish to work on, we do not use deep learning in this study. 310

Probabilistic models 311

The models above work by defining some measure of dependency in a pairwise or 312

all-to-one way. However, none of these methods explicitly defines a probabilistic model 313

of the data (although there is an implicit model in the regression). In this section, we 314

briefly introduce Gaussian graphical models and then review the work done with BNs, 315

which will be the main focus of the article afterwards. 316

Gaussian graphical models One of the simplest probabilistic models we can 317

consider is a multivariate normal distribution. The probability density distribution for a 318

multivariate normal vector X ∈ RG is given by: 319

p(X|µ,Σ) =
1√

2π|Σ|
exp

{
−1

2
(X− µ)TΣ−1(X− µ)

}
(4)

December 16, 2020 8/32

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2020. ; https://doi.org/10.1101/2020.02.05.935007doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.935007
http://creativecommons.org/licenses/by/4.0/


where µ is the mean vector and Σ is the covariance matrix. 320

Gaussian models give us the whole power of probabilistic inference, which allows us 321

not only to make predictions about gene expression but also to quantify our uncertainty. 322

Furthermore, they have a very important property in that the inverse of the covariance 323

matrix, the precision matrix W = Σ−1, contains the partial correlations between the 324

pairwise components of X = (X1, ..., XG).The partial correlation is the residual 325

correlation between two variables once the effect of all other variables has been 326

subtracted. Therefore, it is a better measurement of the strength of the relationship 327

between genes and is less vulnerable to making spurious associations due to the highly 328

correlated nature of the GRN. 329

This result is used by Gaussian graphical models [34], which are learned by treating 330

the measurements of expression as a multivariate normal random vector and estimating 331

the precision matrix from the samples using maximum likelihood estimation. The 332

number of parameters is of the order G2 , so regularization techniques are used, mainly 333

sparse regularization techniques such as L1 because they have the benefit of having a 334

topological interpretation for building the network structure, that is, the nonzero entries 335

of the precision matrix correspond to the edges of the underlying GRN. 336

Gaussian models have all the properties we want: they are probabilistic, 337

interpretable and have both a topological and a predictive component. However, they 338

are limited mainly by the fact that it is generally very difficult to estimate a 339

high-dimensional precision matrix from limited data. It might even be theoretically 340

impossible when the number of samples is less than the number of dimensions of the 341

matrix (although an estimate can be found but with no guarantee of correctness). There 342

is also the assumption of normality for the expression data, which implies linearity in 343

the relationships. Even though this is a strong assumption, it is used in linear regression 344

networks (implicitly) and Gaussian graphical models, and it seems to be a reasonable 345

approximation that is very accurate in practice and enormously simplifies computations. 346

Bayesian networks 347

Every method we have discussed so far uses a top-down approach to the task of learning 348

the topology of the network, in the sense that models start with all of the variables at 349

the same time and then prune them. The class of methods we will focus on, BNs, have 350

a similar objective to Gaussian models in that they try to build a joint probabilistic 351

model, but they approach it in a bottom-up way, building the model from local 352

conditional parts. 353

BNs [10] are probabilistic graphical models that combine probability and graph 354

theory to efficiently represent the probability distribution of a group of variables 355

G = {X1, ..., Xn}. BNs model probabilistic conditional dependencies and 356

independencies between the variables in G in terms of a directed acyclic graph (DAG) 357

and a series of conditional probability distributions (CPDs) [35]. Each of the nodes in 358

the graph represents a variable in G with the edges representing conditional 359

dependencies between the variables. Each of the CPDs is associated with a variable Xi 360

and gives the probability distribution of that variable conditioned on its parents in the 361

graph, that is, the nodes that have edges directed towards Xi, which we denote Pa(Xi). 362

The formula for the joint probability distribution of the variables given all the CPDs is: 363

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (5)

364
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Previous work using BNs 365

BNs and other probabilistic graphical models are commonly used for other problems 366

regarding brain data, specially fMRI, as in [36] or [37]. In the field of GRNs, one of the 367

earliest approaches was [11] which used a simple approach of searching the whole space 368

of structures for the one with the maximum likelihood. [38] used the PC algorithm on 369

microarray data to obtain a GRN, and in [39], co-regulated modules of genes were first 370

identified and then a BN was built for each of them. Some more recent advances 371

include [40] which used a variant of the Chow-Liu algorithm to be able to learn a BN in 372

quadratic time but with a severe limitation on the structure since it must be a polytree. 373

Works such as [41] attempted to simplify the problem of learning the structure by 374

including expert knowledge in the form of a prior for the structure. In [28] we can find 375

several BN-based methods, of which the best used simulated annealing to add a 376

stochastic element when learning the DAG structure and average the results to increase 377

their resiliency against possible errors. In [21], the authors used topological information 378

to restrict the space of structures and accelerate the search. Works such as [42] present 379

a parallelized method to learn a genome-wide network that is implemented in a 380

supercomputer. One interesting approach is [43], in which the authors learned small 381

local networks around each node and then combined them. We also have the very 382

recent [44], which reviews different ways of introducing prior knowledge as structural 383

restrictions and shows that these restrictions lead to improved results on the 384

reconstruction of the networks. 385

Advantages and limitations of BNs 386

BNs did not show a good overall performance in the DREAM5 challenge [28], but their 387

interpretability makes them a good model for improvement. They readily encode the 388

regulatory network in their graph structure, and the way they can be built avoids the 389

problem of finding a fully connected network, as in regression or pairwise methods. This 390

reduces the need to use an arbitrary threshold to remove some edges, since they are 391

taken out in a less arbitrary way by testing for conditional independence, and they can 392

capture indirect regulation well. Their probabilistic nature is especially important in 393

this domain because it allows us to run inference through the learned structure, which is 394

done by setting some genes as fixed evidence and then querying other genes to see how 395

they have changed, thus providing a view on how some genes influence the expression of 396

the rest. Furthermore, the output at each node is a probability distribution, which is a 397

very natural way of presenting the variability inherent to the stochastic process of gene 398

regulation. 399

As seen above, the main disadvantage of using BNs is that for them to be scalable to 400

genome-wide datasets, we require either restrictions on the structure or 401

high-performance computing (HPC). Even when restricting the structure using methods 402

such as sparsity penalties, priors or structural restrictions, we still have to deal with the 403

sheer size of the network we are trying to build, resulting in most of the common 404

methods being just too slow as far as the GRN of the human brain is concerned. We 405

also have the problem that this organ is not as well studied in other organisms, so 406

introducing the small amount of reliable expert knowledge we have does not reduce the 407

size of the problem much while also introducing a slowdown of having to make the 408

algorithm consistent with this knowledge. The fastest method that does not use HPC or 409

restrictions for gene expression data is [43], but its largest network is orders of 410

magnitude smaller than what we need, that is, it works with networks of less than 1000 411

nodes while we need to build a 20.000 node network. On the other hand, methods that 412

claim to scale to millions of variables such as FGES [12] are not applicable to our 413

problem since they require local sparsity, which, as we saw in the section on topological 414
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properties of GRNs, we do not have. 415

We took the best BN method in the DREAM5 challenge and the model in [43] as 416

the state of the art for learning GRNs of 1000+ nodes. The first used a simulated 417

annealing algorithm with the catnet R package [45] to learn the network multiple times 418

and merged the results to increase robustness. The second used a local approach (at the 419

node level) to learning and then combining the resulting networks. By combining both 420

methods with some important changes to achieve competitive times for much larger 421

networks we arrived at our new proposal, FGES-Merge, which we present in the next 422

section. 423

Finally, we want our network to offer a predictive framework for gene expression and 424

be easy to interpret for biological research. This is of the uttermost importance these 425

days since law changes like the General Data Protection Regulation (GDPR) and the 426

right to an explanation from algorithmic decisions [46] make it indispensable that 427

models that might have applications in the biological sciences and medicine are easily 428

understood by experts. This trend towards interpretable and explainable AI is one of 429

the main reasons we decided to use BNs in the first place and motivated the creation of 430

our visualization tool. 431

Problem statement and methods 432

Problem statement 433

Learning the genome-wide GRN for the human brain 434

The main goal of this work is to find an efficient way of reconstructing full genome 435

regulatory networks and apply it to learning a GRN for the human brain. Full genome 436

networks for humans can have from 20,000 to 50,000 nodes (depending on whether 437

non-protein coding genes are considered or not). As discussed in the previous section, 438

this size of network is usually very hard to work with due to the associated 439

computational cost. Few algorithms scale well to this size, and most need HPC 440

resources to be able to deal well with it. 441

As our dataset, we incorporated the microarray data from the Allen Brain Institute 442

Human Brain Atlas. The dataset has measurements for 20,708 protein-coding genes 443

with 3500 samples gathered from different areas of the brain. 444

Visualizing full genome networks 445

Our other main goal is to present a new tool for visualizing and interpreting massive 446

BNs. The usual method used to visualize networks of this size is to decide sections of 447

interest and show only subnetworks of a more reasonable size. Trying to visualize the 448

whole network is usually unfeasible due to the computational expense required to render 449

it and the way it can become exceedingly complicated to understand, thus losing the 450

advantage of interpretability we are trying to achieve. To solve these problems, we 451

implemented NeuroSuites-BNs (available at https://neurosuites.com), which we will 452

explain in detail in the section Visualization of Massive Gene Regulatory Networks. 453

FGES-Merge 454

FGES-Merge is our proposal for an algorithm capable of efficiently learning massive 455

BNs without forcing initial structural restrictions. We broadly follow the structure of 456

the algorithm from [43] but introduce several improvements that make our algorithm 457

scale from the 1000-node networks tested in the reference algorithm to networks that 458

are 20 times larger, such as the human genome network. 459
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Fig 2. Diagram showing the neighbourhood selection step of the FGES-Merge
algorithm. First the pairwise BIC matrix is computed by calculating the BIC score of
adding the edge between each pair of nodes, such that every aij corresponds to the
BIC(Xi, Xj) (Eq. 7). Then, the BICs are filtered to only take into account the positive
values and sorted from highest to lowest. We divide each row at the most likely point
and take the left side as the neighbours for the next step.

The structure of the algorithm is as follows: First, for each gene Xi, we select its 460

most likely neighbours as candidates for a local subgraph around Xi. Next, we learn 461

each local subgraph using a modified version of FGES. Finally, we merge the local 462

subgraphs by performing graph unions with prunning to satisfy the topological 463

properties of GRNs. 464

Neighbourhood Selection 465

We want to simplify the problem of learning a massive BN by dividing the network into 466

a smaller neighbourhood network for each of the nodes and then merging them. To do 467

this, we need to select which nodes will belong to each of the smaller networks. In [43], 468

the authors calculate the pairwise MI between the nodes. Then, for each node Xi, they 469

assume the MIs come from two different distributions: one with the nodes in the 470

neighbourhood of Xi, and the other with the nodes that are not in the neighbourhood of 471

Xi. They assume that any MI sampled from the first distribution will always be higher 472

than any MI from the second. This means that they can sort the MIs from highest to 473

lowest and test the likelihood, for each possible size s of the network, that the first s 474

nodes belong to a distribution and all the others belong to the second distribution and 475

compare it with the likelihood that they are all sampled from just one distribution. 476

Then, they take the most likely neighbourhood size smax and return the first smax 477

nodes sorted by their MI with Xi as the candidates for the first neighbourhood network. 478

They then repeat this process for each of the nodes in the original graph (Fig. 2). 479

We modify this procedure by changing our score from the MI of Xi and Xj to the 480

local BIC [47] of adding the new edge from Xj to Xi (although this will be symmetrical 481
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at this stage), which is calculated with the following formula: 482

BIC(Xi|Xj) = N ln(σ̂2
e) + λk ln(N) (6)

By using this expression for the BIC score, we assume that the level of expression of 483

each gene is distributed as a linear Gaussian depending only on its parents, so σ̂2
e is the 484

average of the sum of the squares of the residuals of regressing the child node against its 485

parents. Here n is the number of instances, k is the number of parents and λ is the 486

penalty which is a hyperparameter of the algorithm. As we saw in the review of the 487

methods, assuming a Gaussian distribution for gene expression is valid and gives good 488

results. It also speeds up the second step of the algorithm (FGES) because we use BIC 489

again as a score for maximization, which is especially useful after we have found the 490

structure since both estimating the parameters of the BN and performing inference 491

become significantly faster. 492

We also do this because we will also need the BICs for the next step in the algorithm. 493

Since calculating BICs is one of the most expensive steps and calculating MIs would take 494

a similar amount of time without significant advantages, we replaced the values. of the 495

BICs for the MIs in our version of the algorithm. Since the size of the BICs matrix is of 496

order G2 and the calculations are independent of each other we parallelized this step. 497

Our second modification is limiting the possible size of the neighbourhood. We 498

decided to do this because the topological properties of the GRN imply that the set of 499

parents of each node is small. Even though the set of children can be very large for the 500

hubs of the network, we assume that each child will contain the hub in its 501

neighbourhood. This means that when we merge the edges between the hub and its 502

children, we always expect the edge between the hub and each child to be added to the 503

final network. This limitation makes each of the neighbourhood networks smaller thus 504

speeding up the algorithm. 505

Fast Greedy Equivalence Search 506

In this step [43] uses a simple greedy strategy to learn the neighbourhood networks. 507

Instead, we use our own variant of the FGES [12] algorithm which is much faster. FGES 508

starts by greedily searching over the space of edge additions in the forward equivalence 509

search (FES) step. At each step, it adds the best possible edge to the structure of the 510

BN according to the BIC difference from adding that edge, which, if we want to add an 511

edge from Z to Y , is given by: 512

∆BIC(Y,Z) = BIC(Y |Pa(Y ) ∪ Z)− BIC(Y |Pa(Y )) (7)

where each of the BICs is calculated using Eq. 6 after learning the multilinear 513

regression of Y against the set of its parents (with and without Z). Then, instead of 514

calculating the values of all possible edge additions again, our variant FGES algorithm 515

uses the fact that since the BIC is a local score, the new edge can only modify the score 516

of some of the edges around it. This allows us to skip many of the computations. Once 517

no edge additions are possible (because they would all worsen the graph), we search the 518

space of edge deletions in the backward equivalence search (BES) step to end up with 519

the best scoring structure. (Fig. 3). Explaining the procedure in detail is beyond the 520

scope of this paper, but the full pseudocode can be found in the appendix of [12]. The 521

original algorithm is implemented in Tetrad [48], and our version can be found at 522

https://gitlab.com/mmichiels/fges parallel production. 523

The main modifications we do are parallelizing the calculation of the new possible 524

edge additions at each step and adding simulated annealing to choose which edges to 525

add or remove. The first change makes the slowest step of the original FGES algorithm 526

much faster. We first create the set of all edges that have changed with the last addition 527

and then divide it across all processors so that we can calculate their scores in parallel. 528
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Fig 3. This diagram shows the basic flow of the FGES algorithm, following the
example of Fig. 2. First, we take the neighbourhood candidates from the previous step
and greedily (except for the simulated annealing step) add edges until the BIC cannot
improve in the FES. Then, we perform any edge deletions that improve the score in the
BES. This approach gives us the globally optimal neighbourhood network for the
candidates. We then repeat the process for each of the other nodes.

The second change sometimes chooses suboptimal additions and deletions to increase 529

exploration by including a probability that a random addition or deletion will be chosen 530

instead of the maximum scoring one. This probability will decrease with each iteration 531

until it reaches zero, so the final steps of each network are always performed greedily. 532

Given two neighbouring nodes X i and X j (in the sense of belonging to the same 533

neighbourhood graph), we are usually going to find them together in many of the small 534

networks. That is, if one of them is selected, the other is very likely to be selected too. 535

Since the neighbourhood networks are smaller than the original, they are necessarily 536

missing some context, so the optimal edges in the neighbourhood network might not be 537

the same as those in the original. By allowing for suboptimal edges, we increase 538

exploration in each of the subgraphs and make it more likely that the final structure 539

contains the true edges. Since that structure will be pruned later, we do not have the 540
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problem of keeping edges that are very low scoring for the final graph. 541

Merge 542

The final step is combining all the learned local networks into a single global network 543

for all the nodes. In [43], the authors try different methods for doing this and conclude 544

that the best scoring method is to simply perform the union of all the graphs while 545

checking for and removing any cycles. We found an improvement to this method by 546

using a pruning strategy that removes the lowest scoring edges according to their BIC 547

and the number of times they appear in the subgraphs. Since we only calculate the 548

BICs once, at the beginning of the merging phase, this is an approximate strategy since 549

we do not calculate the effect of each removal again. However, we found that the 550

accuracy of the recovered network improved and the topology of the pruned network 551

more closely resembled the true topology of a GRN. 552

We also added a step that allows the user to optionally introduce a predefined list of 553

hubs (which in the case of GRNs would usually correspond to transcription factors) so 554

that edge orientation can be consistent with expert information. If this list is missing 555

the algorithm chooses the nodes with the highest number of neighbours as hubs and, if 556

we find inconsistent orientations during merging, makes the hubs the parents. Again, we 557

found that this change improved the accuracy of edge orientation and made the 558

topological properties of the BN more closely match those of a true GRN. See Fig. 4 559

which summarizes the merging and pruning process. 560

Fig 4. Diagram explaining the combination steps. (a) Simplified example continuing
from Fig. 3. First, we merge the neighbourhood networks with their union, removing
any existing cycles. In the second step, we find the hubs (in blue) either via expert
knowledge or by using the most-connected nodes in the network to orient the edges
from the hubs to their connected nodes that are not also hubs while checking for cycles
and removing them. Finally, in the third step we prune the worst performing edges by
their BIC score up to a size threshold corresponding to the expected number of edges in
a GRN (approximately # edges < 10G, see [7]). (b) Real world use case of the
combination procedure with our learned human brain network.

Parameter Learning 561

The CPD of a node Y with parents Pa(Y ) in a Gaussian Bayesian network is given by: 562

p (Y |Pa(Y )) = N
(
β0 + βTPa(Y );σ2

Y

)
(8)
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To estimate the parameters β0,β, and σ2
Y for each node, we learn a multilinear 563

regression against the set of the parents of the node. The parameters of the regression 564

give an estimate of the coefficients of the mean of the CPD for the node and the mean 565

of the sum of squares of the residuals of the regression gives an estimate of the variance. 566

Inference 567

Exact inference in a Gausian Bayesian network is easily done since these networks
represent multivariate Gaussian distributions. If Y is a linear Gaussian of its parents
(i.e., it follows Eq. 8) and Pa(Y ) are jointly Gaussian with distribution N (µ; Σ), then
the distribution of Y is a normal distribution N (µy;σ2

y) with

µy = β0 + βTµ

σ2
y = σ2

Y + βTΣβ

And the joint distribution over Pa(Y ) and Y is a normal distribution where: 568

Cov[Pa(Yi);Yi] =

k∑
j=1

βjΣij , i = 1, ..., k (9)

We can convert from one representation to another by ordering all the variables 569

topologically (no child is before their parents) and iterating over the topological order, 570

adding nodes one by one to the joint distribution. 571

Then, we have two operations: marginalization, which gives us the joint distribution 572

of some variables of interest and conditioning, which sets the values of some of the 573

variables and returns the conditional distribution given those values. 574

For marginalization, we just need to extract the means, variances and covariances of
the variables of interest. For conditioning, we follow the procedure described by Koller
and Friedman in [35] which requires converting the Gaussian into information form (for
which we need to invert the covariance matrix) and setting the values of the evidence
variables. We do not need to invert the whole matrix, just the block containing the
evidence variables. To obtain the posterior CPD for the variable Y after conditioning
on a set of variables X we use the following equationsa:

p(Y |X) = N
(
β0 + βTE;σ2

Y

)
β0 = µy − ΣYXΣ−1XXµX

β = Σ−1XXΣYX

σ2
Y = ΣY Y − ΣYXΣ−1XXΣXY

In our implementation we vectorize the formulas to obtain the parameters for the 575

|G| − |X| variables left after conditioning with just a single matrix multiplication. 576

Normally, inference in BNs is exponential in the number of nodes, but for Gaussian 577

Bayesian networks, it is reduced to matrix multiplication and inversion so the 578

complexity is O(l3) where l = max(|E|, |G| − |E|), which makes the complexity 579

tractable for our 20,000 node network. 580

Visualization of massive gene regulatory networks 581

Genome-wide GRNs are on the order of thousands of nodes and edges and hence are 582

difficult to visualize. However, as for every other network, visualization is a key aspect 583

for understanding and analysis. There are two main concerns that need to be overcome 584

to develop a visualization tool for massive networks: computational efficiency and 585
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usability. One common method to alleviate the computational burden and make the 586

network sufficiently tractable in order to use common tools for the analysis of BNs is to 587

show only subgraphs instead of the global network. While this approach is valid for 588

showing some relevant genes and their connections, we would prefer to have the ability 589

to visualize and work with the whole network at once. 590

We used the Sigma library for the graph visualization task. Sigma is a JavaScript 591

library for graph visualization that provides a WebGL backend to make use of the GPU 592

resources. GPUs have substantially increased in power in recent years and are now able 593

to solve the problem of visualizing a massive network. Since the library is a 594

general-purpose graph visualization package, we implemented all the necessary 595

modifications to adapt it for BNs. That is, for proper visualization of BNs, we need to 596

visualize the node parameters, run inference-related operations such as making queries 597

and observing the posterior distributions, implement specific highlighting tools such as 598

showing the Markov blanket of a node, etc. In summary, we need a rich set of 599

interactive tools to fully understand the BN structure and parameters. This is where 600

current BN visualization software frameworks fail for massive BNs, as their 601

implementations of these operations are not scalable to tens of thousands of nodes. 602

The goal was to make a complete modern solution for BN learning and visualization, 603

so we developed a web application to include all the desired functionalities. The main 604

advantages of this approach are the ease of use, the interactive capabilities and 605

computational efficiency. The ease of use is achieved by the software architecture, as a 606

web application is inherently easier to access than desktop software where the user may 607

need to install multiple packages or different dependencies for every operating system or 608

hardware architecture. Furthermore, the user interface has been specially designed to 609

manage massive networks, resulting in well-polished interactive tools for working with 610

the BN, as we explain below. The whole web service was designed with computational 611

efficiency in mind, having been optimized for the visualization task from the beginning, 612

including a separation of the visualization code from the business logic code for 613

managing the graph algorithms (such as computing different layouts). 614

Interactive tools for BN visualization 615

Now, we will focus on the interactive tools we developed to be able to understand 616

massive BNs. Some of these tools are general purpose graph tools, while others are 617

specific for BNs. One of the most important general purpose tools is the selection of 618

layouts to position the nodes and edges in a meaningful way. It is possible to run every 619

layout for the BNs, but force-directed layouts such as the Fruchterman-Reingold or 620

ForceAtlas2 algorithms [49] are recommended for GRNs, as they enable us to notice the 621

formation of some clusters (see Fig. 5 to view a selection of the available layouts). 622

To understand massive networks, we usually need multiple ways to find and select 623

the desired nodes. To highlight important nodes there are two main options: a user 624

defined list of nodes ordered by groups or a set of automatic detection algorithms. These 625

algorithms can either highlight nodes by some topological properties, such as their 626

degree or betweenness centrality, or group them by communities by running the Louvain 627

algorithm [50]. Usually, the combination of a force-directed layout with the Louvain 628

algorithm provides interesting insights into possible clusters in the network structure. 629

To provide a use case for dealing with a user-defined list of groups, we downloaded 630

the DisGeNet genes-diseases metadata database of [51]. his provides information for 631

grouping the genes by diseases they are associated with, making it useful for 632

incorporation into the visualization of our learned GRNs. The user can select a specific 633

disease and view all the associated genes. Conversely, the user can select a specific gene 634

and view the disease associated with that gene as well as all the genes associated with 635

that same disease (Figs. 6a and 6b). 636
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(a) (b) (c)

(d) (e) (f)

Fig 5. Some layouts algorithms for BNs visualization, highlighting the important nodes
with the betweenness centrality algorithm. (a) Dot layout. (b) Sugiyama layout. (c)
Fruchterman-Reingold layout. (d) ForceAtlas2 layout. (e) Circular layout. (f) Image
layout of a star shaped picture.

(a) (b)

Fig 6. Nodes colored by the genes-diseases metadata association from the DisGeNet
database. Our learned full brain human network. (a) All the genes colored by their
main associated disease. (b) Node ZNF644 selected to view its disease association
(Myopia) and all its children genes related to it.

The tools we developed specifically for BNs are for visualizing parameters and 637

performing probabilistic inference. In our Gaussian Bayesian networks, the parameters 638

are shown as an interactive plot of the marginal Gaussian distribution, where the user 639

can zoom and hover the mouse over the plot to see the distribution values. 640

To perform inference, the user must first set a specific value for a node or a group of 641

nodes. This will set the selected nodes as evidence variables E and give them a special 642

colour (red).The evidence variables, E, can be selected in three ways: selecting one 643
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(a)

(b)

Fig 7. Inference workflow in the BNs visualization. Our learned full human brain
network. (a) Set the evidence E = e in a specific node, in this case the one in red,
corresponding to the KIF17 gene associated with the schizophrenia disease. (b):
p(Q|E = e), the posterior distribution of a node Q (the one at the bottom in red,
corresponding to the gene KCNIP3 associated with malignant neoplasm of breast) given
the evidence, where e is the KIF17 gene. In this case the network have found a
relationship between these two diseases, since a very low value near zero for the gene
associated with schizophrenia (KIF17) results in a very low value for the gene associated
to malignant breast neoplasm (KCNIP3). We have found some evidence for this in the
literature [52].

specific node as evidence (Fig. 7a), selecting a group of nodes as evidence (from an 644

imported user defined groups file or Louvain algorithm) and defining a new list of nodes. 645

The inference is performed on the server side to provide an efficient implementation; 646

therefore, we do not need the user to have a powerful computer that could help with 647

usability. This allows us to run the inference in less than 30 seconds, even in a massive 648

network with 20,000 nodes. The resulting multivariate joint distribution and the 649

original joint distribution are cached in the back end to provide a faster visualization of 650

the results. This means that the process is almost invisible to the user and is done only 651

when evidence or a group of evidence is fixed. 652

The second step is to visualize how the distributions of other nodes have changed 653

with respect to the original ones before setting the evidence values. The user can either 654

click on or search for a specific node or select a group of query nodes Q to obtain the 655

posterior p(Q|E). his will be shown as an interactive Gaussian probability density 656

function plot in blue, while the original distribution will be shown in the same plot in 657

black (Fig. 7b). 658

Following the previous gene-disease use case, we can set as evidence nodes all the 659

genes associated with a specific disease. In this way, we can, for example, set a high 660

value for these genes and see how the distribution of genes associated with another 661

disease has changed. 662

Finally, to support visual differential analysis, we created a tool that allows for 663

comparison between two networks. This tool works by overlapping two networks with 664

the same nodes so that the differences between the edges are shown with different 665

colours, as in Fig. 8. We also provide a tool for showing only the edges of the first 666

network, the edges of the second network or the common edges. 667

All the software has been packaged as a Docker [53] container to provide a 668

production ready solution. Since the computationally costly code is running in our 669
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/net1comparison1.pdf

/mt-cmtt.cfg /mt-cmtt.cfg ./images/bn_gui /net_1_comparison_1.pdf

(a)

/net1comparison2.pdf

./images/bn_gui /net_1_comparison_2.pdf

(b)

/net1comparison0.pdf

./images/bn_gui /net_1_comparison_0.pdf

(c)

/net1comparison3.pdf

./images/bn_gui /net_1_comparison_3.pdf

(d)

Fig 8. Structure comparison of the Network 1 of the DREAM5 challenge. (a) True
graph edges. (b) FGES-Merge learned graph edges. (c) All edges. True graph edges are
displayed in black, FGES-Merge learned graph edges in blue and common edges in green.
(d) Common edges between the True graph and our learned graph with FGES-Merge.

backend, the users only need an average GPU card to learn and visualize massive BNs 670

fluently. 671

Results 672

Benchmark tests 673

We wanted to compare the ability of our method to recover the underlying structure of 674

GRNs against that of a variety of algorithms, even those that do not use BNs. However, 675

we also wanted to compare our method to other BN methods as a way to show that our 676

algorithm transcends the usual difficulty in learning BNs and is capable of scaling to 677

thousands of nodes. 678
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To achieve these comparisons, we ran two different tests. First, we compared our 679

accuracy in recovering the structure of the networks from the DREAM5 challenge [28]. 680

We used networks 1, 3, and 4 following [28], since network 2 was discarded during the 681

original challenge. The second test was against other common methods of learning BNs 682

with the same data, but instead of measuring accuracy, we measured the time taken to 683

learn the structure. 684

All the experiments for both the benchmarks and final results were run in our MPI 685

cluster with three nodes, each one running in Ubuntu 16.04, Intel i7-7700K CPU 4 cores 686

at 4.2 GHz, and 64GB RAM. 687

Structure recovery benchmark 688

We used the DREAM5 challenge results repository avialble at 689

https://www.synapse.org/!Synapse:syn2787211 to obtain the structure learned by all 690

the original competitors. This allowed us to compare our results with those of the 691

competitors without having to run all the algorithms ourselves, which might have been 692

impossible since not all of the other methods are available and we expect that some of 693

them would have taken a very long time to run. 694

Each of the methods for the benchmark outputs a matrix of G × G entries, one for 695

each possible edge in the network. Each entry corresponds to the probability assigned 696

to the edge by the method. BN methods do not usually do this, and we believe that this 697

might have been one of the reasons they performed so poorly during the original 698

challenge. Our solution was to establish a threshold for all the methods and transform 699

their probabilities into a series of binary predictions. To do this, we had to take into 700

account that the network is sparse, so the prior probability for the binary classification 701

problem is not 0.5 but instead approximately 1/number of nodes (since we expect the 702

number of edges and nodes to be the same order of magnitude). Had we not done this, 703

any method that was well calibrated and used the proper prior would get close to 99 704

The original score for the DREAM5 challenge was the area under the precision-recall 705

curve (AUPRC), which is usually a good score for imbalanced problems. However, it 706

presented two problems. First, it was hard for us to implement more than one threshold 707

since, as stated above, BN methods do not give probabilities to edges, so we could not 708

calculate the AUPRC properly for our method. Second, since the method uses multiple 709

thresholds, a good score here does not directly translate to its usefulness in the lab. 710

When given one of these networks, a biologist has to make a choice on what interactions 711

to test along with the corresponding cost, and they will not have the luxury of knowing 712

which of the thresholds will give the best results for the network beforehand. AUPRC is 713

still used because it maximizes a combination of precision and recall and deals well with 714

class imbalance problems. In the end, we decided to use a score that has these two 715

properties and does not have the problem of using many thresholds, the Matthews 716

Correlation Coefficient (MCC) [54], which is basically an extension of the F-score to 717

deal with class imbalance. The expression for the MCC from the confusion matrix is: 718

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(10)

where TP, TN, FP, and FN are true positives, true negatives, false positives and false 719

negatives respectively. The MCC ranges from 0 to 1 with 0 meaning that the classifier 720

has misclassified a whole class (predicting all edges or all non-edges) and 1 meaning 721

perfect classification. Fig. 9 shows the MCC scores for all the methods in the DREAM5 722

challenge and FGES-Merge for networks 1, 3 and 4. FGES-Merge does better than 723

every BN method except 1 and 2 (simulated annealing with Catnet in R) as seen in Fig. 724

9a (in which FGES-Merge is one of the best performers overall) and Fig. 9b, (see Fig. 725
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8d to see how much of the actual structure was recovered). Furthermore, in Fig. 9c, 726

where BN methods 1 and 2 have very poor scores, FGES-Merge is still one of the best 727

methods. Fig. 9c highlights the most complicated task of the three since the task 728

involves the GRN for Saccharomyces cerevisiae, a eukaryote, which has more complex 729

gene regulation processes compared to E. coli, a prokaryote, in network 3, or the in 730

silico network in (a) which is also modelled after E. coli. We expect this good 731

performance for eukaryotic cells to translate well to the human brain GRN. 732

Times benchmark 733

For our times comparison, we tested some of the most common BN learning algorithms 734

implemented in the bnlearn R package [55] and one regression method (GENIE3) on the 735

smallest network (≈ 1000 nodes) from the DREAM challenge (network 1). We 736

attempted to show whether our algorithm scaled better than the others by running all 737

of them in increasingly larger networks, expecting that our algorithm would be beaten 738

by Chow-Liu’s algorithm since it has a complexity of O(G2) and probably by GENIE3, 739

since we expected regression to be faster than learning a BN. In the end, we could not 740

test more than the smallest network since although our method finished in slightly more 741

than an hour, the other non-quadratic BN methods ran for more than a day and did not 742

finish. 743

The results present in Fig. 10 show that our algorithm is slower than that of 744

Chow-Liu, as expected, but slightly faster than GENIE3 which we did not expect. 745

These results are surprising because they imply a massive improvement in speed 746

between FGES-Merge and most other BN learning algorithms with very few restrictions. 747

Human Brain Regulatory Network 748

Finally, we applied our method to solve the problem we were first interested in: learning 749

the genome-wide regulatory network for the human brain. 750

The main objective was to find genome-wide GRNs for various areas of the brain 751

(the cortex, white matter, cerebellum, hypothalamus, etc.). These networks would be 752

very useful tools for biologists who are interested in studying how the functional 753

differences between brain areas might arise from differences in genetic expression. To 754

achieve this, we started with the Allen Human Brain Atlas microarray data and filtered 755

only the protein coding genes. Then, we used FGES-Merge to obtain a series of GRNs 756

for some of the high-level structures defined by the ontology of the Human Brain Atlas. 757

We decided to only obtain the GRNs of these high-level structures instead of performing 758

a more fine-grained approach because we did not have enough samples in our dataset to 759

guarantee good results for smaller structures. 760

The application of FGES-Merge allowed us to achieve all of our objectives. We were 761

able to obtain networks for various areas of the brain and an extra network for the 762

average expression of the whole brain. In this section, we will show some of the 763

generated networks, comment on possible applications of our models and discuss the 764

topological properties of the learned networks to see if they respect the known empirical 765

properties of GRNs. 766

Networks learned 767

Fig. 11 shows two networks obtained with the whole dataset, that is GRNs for the 768

average gene expression level of the whole brain. These GRNs were learned with 769

different penalty parameters for FGES-Merge (see Eq. 6) and thresholds for the number 770

of edges. We can readily see how the higher-penalty network (Fig. 11a) presents various 771

disconnected components unlike the lower-penalty network (Fig. 11b). This is what we 772
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(a) In-silico network.

(b) GRN for Escherichia coli
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(c) GRN for Saccharomyces cerevisiae

Fig 9. MCC scores for all the methods in the DREAM5 challenge and FGES-Merge for
networks 1, 3 and 4. FGES-Merge does better than every BN method except 1 and 2
(the simulated annealing with Catnet in R) in (a) and (b), being one of the best
methods in (a). Furthermore, in (c) where methods 1 and 2 of BNs have very poor
scores, FGES-Merge is still one of the best.
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Fig 10. Time taken (in hours) for different methods of learning a GRN for network 1
of the DREAM5 challenge. Among the BN learning methods only Chow-Liu’s algorithm
is competitive in time which is normal since its complexity is O(G2). Even a regression
based method like GENIE3, which is supposed to be much faster than BN based
methods, is slower than FGES-Merge. Algorithms that did not finish before the 26 hour
mark were forced to stop early.
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/full650nohubs.pdf

./images/bn_gui /full_65_0_no_hubs.pdf

(a) (b)

Fig 11. Human brain genome networks. The figure shows two networks learned with
the whole Allen Brain Atlas dataset with different parameters for FGES-Merge. Both
are visualized using NeuroSuites-BNs and colored via the Louvain algorithm to identify
groups pf genes. (a) Network learned with a high penalty (λ = 65) for the FGES-Merge
algorithm. (b) Network learned with a lower penalty (λ = 45) for the FGES-Merge
algorithm

would expect since a higher penalty forces sparsity. The second network predicted more 773

edges than expected so the pruning step of FGES-Merge was used to remove some of 774

the worst edges. 775

These networks can be used to visually search for relationships between genes, such 776

as those shown in Fig. 6, which can then be tested to obtain possibly useful information 777

about diseases or development. It can also be used quantitatively as in Fig. 7 to obtain 778

concrete predictions about the effects of some genes on other genes’ expression levels. 779

This could complement clinical trials that aim to alter gene expression by helping 780

researchers decide which genes might be good targets for medication and to explore 781

possible side-effects. 782

Finally, multiple networks for different areas could be visualized as in Fig. 8 to serve 783

as an aid for differential analysis. Instead of observing only the gene expression levels 784

between different conditions, we could see the structure and parameter differences, 785

obtaining a clearer picture of the differences in gene regulation that lead to differences 786

in gene expression. 787

Topological properties of the learned GRNs 788

Fig. 12 shows the in-degree and out-degree distributions for the human brain GRN and 789

the tail of the total degree distribution (the approximately 1000 nodes with the highest 790

degree). As we discussed before, we expect most nodes to have an out-degree of 0 (they 791

are not regulators), but the nodes that have children should have many of them, as 792

expected from the evolutionary argument. Fig. 12b shows exactly this: of the 20700 793

nodes, most have zero children and so do not appear in the histogram. The ones that do 794

have children can have over 1500 with an average of over 600 children. 795

The in-degree distribution in Fig. 12c is also as expected. Most genes are regulated 796

by a small number of regulators, and even the most regulated do not have more than 80 797

parents. Again, this is in agreement with the biological argument that gene regulation 798
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requires physical interaction, indicating that there is not enough room for hundreds or 799

more regulators. 800

Finally, from all three distributions, we can see that the network is globally sparse 801

but locally dense. Most nodes have no children, as seen in (b), and approximately half of 802

the nodes have fewer than 14 parents, as seen in (a), with most having just one or two. 803

However, the tail of the total degree distribution in Fig. 12a shows that the 1000 nodes 804

with the highest degree have an average of 500 neighbours, with some of them having 805

well over a thousand. That is, even though most nodes have almost no neighbours and 806

the total number of edges is small, there are nodes that have very dense neighbourhoods. 807

These results show that our algorithm respects the topological properties of GRNs, 808

which gives us some reason to believe that the inferred network structure is sound. 809

These results show that our algorithm respects the topological properties of GRNs. 810

This gives us some reason to believe that the inferred network structure is sound. 811

Discussion 812

Conclusion 813

In this work, we have reviewed the problem of reconstructing GRNs from gene 814

expression data. In general, the problem is very difficult, and even the best methods 815

have low scores on the reconstruction. Furthermore, every method that tries to scale to 816

genome-wide networks while creating a quantitative predictive model will have to use 817

HPC or make strong assumptions on the structure and parameters of the inferred GRN. 818

We opted somewhat for this second option, restricting the expression levels to be 819

linear Gaussian distributions to be able to learn a BN, which would have the advantage 820

of being very easy to interpret for experts who might want to use our tool, and we were 821

able to scale to genome-wide networks by parallelizing the most time-consuming parts 822

of the algorithm. The method we have presented, FGES-Merge, is competitive with the 823

state of the art while also beating most BN methods and giving consistently good 824

results even for the harder networks in the benchmarks. Our method is also much faster 825

than any competing BN-learning methods. Furthermore, FGES-Merge gives results that 826

respect the topological properties of real GRNs. 827

Our choice of model also has the advantage of immensely reducing the time required 828

to perform probabilistic inference in a network of this size, making it much more useful 829

for any kind of biological research since it is able to answer queries almost immediately. 830

Finally, we also presented a new software tool that incorporates the learning algorithm 831

FGES-Merge, the inference algorithms and the visualization tool NeuroSuites-BNs, 832

which is available at https://neurosuites.com. 833

The source code for the FGES-Merge algorithm can be found in our repository: 834

https://gitlab.com/mmichiels/fges parallel production. The code for NeuroSuites-BNs 835

can also be found in our repository: https://gitlab.com/mmichiels/neurosuite. All our 836

obtained networks learned from the DREAM5 challenge and from the full human brain 837

genome can be found in the following folder in our repository: 838

https://gitlab.com/mmichiels/fges parallel production/tree/master/BNs results paper 839
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(a) Tail of the total degree distribution

(b) Out-degree distribution

(c) In-degree distribution

Fig 12. Node degree histograms for our learned full human brain network. The
threshold for the minimum number of neighbors and children has been adjusted for a
proper visualization of the histograms. The network corresponds to the Fig. 11b.
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