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Machine tool automation is an important aspect for manufacturing companies facing the growing
demand of profitability and high quality products as a key for competitiveness. The purpose of supervis-
ing machining processes is to detect interferences that would have a negative effect on the process but
mainly on the product quality and production time. In a manufacturing environment, the prediction of
surface roughness is of significant importance to achieve this objective. This paper shows the efficacy
of two different machine learning classification methods, Bayesian networks and artificial neural net-
works, for predicting surface roughness in high-speed machining. Experimental tests are conducted using
the same data set collected in our own milling process for each classifier. Various measures of merit of the
models and statistical tests demonstrate the superiority of Bayesian networks in this field. Bayesian net-
works are also easier to interpret that artificial neural networks.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Quality is defined as the extent to which a product conforms to
the design specifications and how it complies with the require-
ments of component functionality. For some industries, such as
automotive and aeronautical sectors, the quality of their parts is
very important given the high requirements to which they are
subject.

However, difficulties arise from the fact that a measure of qual-
ity can only be evaluated ‘‘out-of-process”, resulting in losses be-
cause there is no alternative to removing defective parts from
the production line. Therefore, it is necessary to incorporate ma-
chine learning methods that provide in-process solutions to pre-
dict quality from some measured variables.

Nowadays, many papers have been published about modelling
the machining process and, more specifically, about the prediction
of surface quality in machining processes. Researchers have ap-
proached the problem from different points of view and using dif-
ferent techniques. The most frequently used are artificial neural
networks (ANNs) (Huang & Chen, 2003; Samson & Chen, 2003;
Tsai, Chen, & Lou, 1999) and linear and multiple regression
(Aboulatta & Mádl, 2001; Feng & Wang, 2003; Kirby, Zhang, &
ll rights reserved.
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Chen, 2004). However, their models focus on very reduced envi-
ronments and with limited experimentation.

In Correa, Bielza, Ramírez, and Alique (in press), we have re-
cently proven the advantages of using Bayesian networks (BNs)
as a successful solution for predicting surface quality in high-speed
milling. As an important added value, the current research includes
the influence of the geometry of the workpiece and the hardness of
the material to be machined as key variables in the model con-
struction aimed at a particular subdomain that contains a range
of aluminium hardnesses used in automotive and aeronautical
pieces. This is a landmark in this application domain, since it ex-
tends and generalizes the scope of the experimentation, which is
no longer confined to a single test profile.

BN models were learnt from data. These data were collected in
our laboratory using experimental design to guarantee statistical
validity. Besides BNs, we constructed ANNs, known to be a strong
competitor widely used in this field, to make a comparison and to
demonstrate the superiority of BNs. As far as we know, there have
been no comparisons of how well these two techniques solve this
kind of problem.

Obviously, these two models have already been compared in
other contexts like e.g. modelling manufacturing processes
(Perzyk, Biernacki, & Kochański, 2005), discriminating plants,
weeds and soil in color images (Marchant & Onyango, 2003), and
modelling the response time of service-oriented systems (Zhang
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& Bivens, 2007). The two have been used in a combined fashion
(Antal, Fannes, Timmerman, Moreau, & de Moor, 2003).

Our paper aims to compare the two approaches (BNs and ANNs)
in the context of a practical industrial problem, the prediction of
surface roughness in high-speed milling. The proposed models are
target the automotive and aeronautical industry using some typi-
cal geometric features and a number of aluminium alloys giving
a wide range of hardness.

The remainder of this paper is structured as follows. Section 2
presents the difficulties for measuring quality in a high-speed mill-
ing process, how surface roughness is inspected and which tech-
niques and data we have used for surface roughness monitoring,
since this is a variable that is very difficult to measure in-process.
Sections 3 and 4 summarise the main principles of BNs and ANNs,
respectively, and introduce the models on which our comparison is
based. Section 5 focuses on the quantitative comparison of the two
models and, in particular, on the knowledge engineering aspects of
both. Finally, Section 6 concludes with our most important
findings.

2. Quality in a machining process

The quality of a component is often associated with its surface
aspect and appearance. However, this can be misleading in the
sense that the surface may contain features that are not reflected
in its appearance. Beyond aspect, a machined surface may contain
imperfections and deviations from the nominal expected surface
that compromise the quality of the component. Hence, it is neces-
sary to clearly define a measure of surface roughness.

2.1. Surface roughness

There are many parameters for characterizing surface rough-
ness, but the most used measure in industry is roughness average,
Ra, representing the arithmetic mean of the absolute ordinate val-
ues f ðxÞ within a sampling length (L), see the following equation:

Ra ¼ 1
L

Z L

0
jf ðxÞjdx ð1Þ

The unit of measurement of roughness is the micrometre (lm), and,
according to ISO:1302 4288:1996, machining processes are able to
produce ranges of Ra from 0.006 lm to 50 lm. This parameter is
primarily used to monitor the production process, which may grad-
ually change the surface due, for example, to the wear of the cutting
tool. As Ra is an average, the defects on the surface do not have
much influence on its results. Hence Ra is not used for defect detec-
tion. However, roughness is of significant interest in manufacturing
because it correlates strongly with the friction interaction with an-
other surface. The roughness of a surface defines how that surface
feels, how it looks, how it behaves in a contact with another surface,
and how it behaves for coating or sealing. For moving parts, rough-
ness determines how the surface will wear, how well it will retain
lubricant, and how well it will hold a load.

Surface roughness can be measured by contact or non-contact
methods, but all the methods are based on recording the surface
height profile. We selected contact methods because of their reli-
ability, although they are a post-process control and do not allow
immediate corrective actions. Robust models to predict the sur-
face roughness from experimental data can be very helpful for
solving this problem, i.e. to guarantee surface quality during the
machining process. These models would serve as virtual sensors
acting while the machining process is taking place to optimize
the final surface roughness. Some of the most recent proposals
adopted by researchers to predict surface roughness are pre-
sented below.
The most commonly used artificial intelligence (AI) techniques
within this context are ANNs with different training algorithms.
Backpropagation is the most tried and tested algorithm. It provides
very good results in the milling process, as investigated by one of
the authors (Correa, 2003).

In the last 10 years, Iowa State University has conducted de-
tailed research on topics like prediction and control in machining
targeting tool state and surface roughness. The group led by J. Chen
has published several studies on this topic for turning and milling.
These works included ANNs and neuro-fuzzy nets (Lou & Chen,
1997, 1999; Lou, Chen, & Li, 1999).

Tsai et al. (1999) presented a surface roughness prediction sys-
tem for the milling process, where they innovated and included
spindle vibration and rotation – VAPR (vibration average per revo-
lution) – in the roughness recognition system. Most of the sensors
they used were developed for turning. To find the predicted Ra va-
lue, they developed two statistical models of multiple regression,
and one ANN model based on off-line trained backpropagation.
The three models were tested in an end-milling operation using
6061 aluminium, and four-flutes tools. The criterion used to judge
the model is efficiency and ability to predict average roughness
values was the percentage roughness deviation. The results
showed that ANN model predictions are much closer to the real
Ra values than using the multiple regression model.

Feng and Wang (2003) focused on the development of an
empirical model for predicting surface roughness in turning, com-
paring a linear regression model with an ANN using the same in-
put/output variables in both models. They used the geometric
roughness model of Boothroyd and Knight (1989) to predict sur-
face finish: Ri ¼ f 2=32r0, where Ri is the arithmetic mean expected
of surface roughness (lm), f is the feed rate (mm/rev) and r0 is the
tool nose radius (mm). The model took on a relatively large radius
and a slow velocity. One conclusion of this study was that the ANN
and regression models are quite similar with respect to the errors.
Both models have a statistically satisfactory behaviour from the
modelling point of view.

Benardos and Vosniakos (2003) reviewed the state of the art of
the prediction of surface roughness in machining, emphasizing two
main problems: (1) determination of the values of the process
parameters that produce the desired quality product (technical
specifications); (2) maximization of the manufacturing system per-
formance using available resources. One conclusion was a recom-
mendation to use a combination of AI research approaches.
Another contribution of this paper is a fishbone diagram of the
set of parameters that are believed to influence surface roughness.

Yang, Chen, Chow, and Lin (2006) proposed an adaptive surface
roughness control system for end-milling operations. This system
was based on the neuro-fuzzy training scheme proposed by Chen
(2000). The fuzzy regions were defined for each parameter: cutting
speed, feed rate, resulting force on the cutting plane (Fxy), normal
force to the cutting plane (Fz), Ra deviation (DRa) and feed rate
deviation (Df). The system has two subsystems, one for predicting
in-process Ra and another to control the feed rate (Df) that is
adapted based on the predicted Ra.

Kirby et al. (2004) published the development of a surface
roughness prediction system using accelerometers in a turning
operation with multiple regression techniques. In 2006, the same
authors (Kirby, Chen, & Zhang, 2006), developed an adaptive con-
trol system that uses the same technique proposed by Chen
(2000) and developed for milling by Yang et al. (2006). These mod-
els require more flexibility to be adapted for use in industry.

2.2. Experimental procedure and data collection

Because experiments can be very expensive in terms of costs and
time, our data collection was based on two designs of experiments



Fig. 1. Geometric design of the test profiles in experiment 1.
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(DoE) in a Kondia HS1000 machining center equipped with a Sie-
mens 840D open-architecture CNC, machining 170� 100� 25 alu-
minium samples with hardnesses ranging from 65 to 152 Brinell. As
referred to earlier, these materials are commonly used in automo-
tive and aeronautical applications.

A fractional design using eight factors at two levels each ð28Þ
was applied for an initial screening. This way only a small number
of experiments were necessary. For this design, islands (convex)
and pockets (concave) were used to represent the geometry, as
shown in Fig. 1, with a 10 mm maximum depth of cut cutting with
Sandvik tools. The eight factors or variables selected were: feed per
tooth (fz), cutting speed (Vc), axial depth of cut (ap), tool diameter
(diam), radial depth of cut (ae), material hardness (HB), geometry
radius (Radius) and geometry curvature (geom). The Ra labels
(class) were allocated in accordance with the average roughness
value (lm) established according to ISO:1302 (2002). They are as
follows: Mirror (0.10 lm), Polished (0.20 lm), Ground (0.40 lm),
Smooth (0.80 lm), Fine (1.60 lm), Semi-fine (3.20 lm), Medium
(6.30 lm), Semi-rough (12.50 lm), Rough (25 lm) and Clean
(50 lm). The summary of the levels is presented in Table 1. There
were 32 experiments, see Table 2.

In addition to the above factors, the following cutting parame-
ters were included: spindle speed (rpm), feed rate (f) and the
resulting forces applied to all the cutting planes ðFXYÞ. The cutting
forces were measured using a Kistler 9257B dynamometer.

Before applying a second design, a feature subset selection was
performed to discard irrelevant variables. The goodness of a subset
of variables was assessed using a filter approach, i.e. ranking the
variables in terms of some scoring metric usually based on intrinsic
characteristics of the data computed from simple statistics on the
empirical distribution. Here we chose the information gain with re-
spect to Ra (the class variable) as the scoring metric to evaluate the
worth of a variable. The information gain IðRa;XÞ is the difference
between the entropy of Ra and the conditional entropy of Ra given
X for any variable X. The process was performed using Weka1 soft-
ware, a free suite of machine learning software written in Java, devel-
oped at the University of Waikato (Australia).

Five variables were selected: fz, ae, diam, HB, geom. They re-
sulted in a combination of curvature and radius characteristics.
These were then used in the second experiment.

For the second round of experiments, the Response Surface
Methodology (RSM) (Myers & Montgomery, 2002) was applied,
using the final five selected variables, this time with five levels.
The summary of the levels is presented in Table 3. The only cutting
parameters selected were rpm and FXY . The RSM planning resulted
in 26 experiments (see Table 4), and three replications to estimate
the error. The geometries selected in this design are shown in Fig. 2.

In all cases the surface roughness Ra was measured with the
Karl Zeiss Surfcom 130 stylus profilometer.
1 http://www.cs.waikato.ac.nz/ml/weka/.
In short, we collected 1262 data items to build the models, i.e.
for network learning and testing, from the variables shared by both
experiments. Like the feature subset selection, these models were
developed using the Weka program.

3. Bayesian network approach

A BN is a probabilistic graphical model, a directed acyclic graph
that represents a set of variables (nodes) and their probabilistic
conditional independencies (encoded in its arcs). Nodes can repre-
sent any kind of variable: a measured parameter, like Ra, a latent
variable or a hypothesis. There are efficient algorithms that per-
form inference and learning in BNs (Neapolitan, 2004; Castillo,
Gutiérrez, & Hadi, 1997).

If there is an arc from node A to another node B, A is called a
parent of B, and B is a child of A. The set of parent nodes of a node
xi is denoted by parentsðxiÞ. A directed acyclic graph is a BN relative
to a set of variables if the joint probability distribution of the node
variables can be written as the product of the local distributions of
each node and its parents as

Pðx1; . . . ; xnÞ ¼
Yn

i¼1

PðxijparentsðxiÞÞ

The aim of supervised classification is to classify instances i given by
certain characteristics xi ¼ ðxi1; . . . ; xinÞ into r class labels, ci,
i ¼ 1; . . . ; r. xil denotes the value of variable xl observed in instance
i. The main principle of a Bayesian classifier is the application of
Bayes’ theorem. Bayes’ theorem, Eq. (2), calculates the posterior
probability PðcjjxiÞ from the conditional probabilities PðxijckÞ and
the prior probabilities PðckÞ as

PðcjjxiÞ ¼
PðxijcjÞPðcjÞP
kPðxijckÞPðckÞ

ð2Þ

The posterior probability PðcjjxiÞ is the probability that a sample
with characteristics xi belongs to class cj. The prior probability
PðcjÞ is the probability that a sample belongs to class cj given no
information on its characteristic values. The probabilities of Eq.
(2) can be estimated from the expert or from a training set required
to build the classifier, where each instance i is given by ðxi; ciÞ.

Bayes’ theorem is used to predict the class and classify each un-
seen instance: a new instance or example j, only characterized
with the values xj of the predictor variables, is given a class label
according to the class that has the maximum posterior probability.
A useful property of the Bayesian classifier is that it is optimum in
the sense that the expected rate of misclassifications is reduced to
a minimum (Ripley, 1996).

3.1. Tree Augmented Naïve Bayes

Among the different Bayesian classifiers, we will focus on two
specific structures: Naïve Bayes and Tree Augmented Naïve Bayes

http://www.cs.waikato.ac.nz/ml/weka/


Table 2
Planning of experiment 1

Exp. fz (mm/tooth) Vc (m/min) ap (mm) diam (mm) ae (mm) HB (Brinell) geom (mm) rpm

E1-1 0.04 500 5 12 1 65 �0.050 13263
E1-2 0.13 500 5 12 1 145 �0.025 13263
E1-3 0.04 850 5 12 1 145 +0.025 22547
E1-4 0.13 850 5 12 1 65 +0.050 22547
E1-5 0.04 500 10 12 1 145 +0.050 13263
E1-6 0.13 500 10 12 1 65 +0.025 13263
E1-7 0.04 850 10 12 1 65 �0.025 22547
E1-8 0.13 850 10 12 1 145 �0.050 22547
E1-9 0.04 500 5 16 1 65 +0.025 9947
E1-10 0.13 500 5 16 1 145 +0.050 9947
E1-11 0.04 850 5 16 1 145 �0.050 16910
E1-12 0.13 850 5 16 1 65 �0.025 16910
E1-13 0.04 500 10 16 1 145 �0.025 9947
E1-14 0.13 500 10 16 1 65 �0.050 9947
E1-15 0.04 850 10 16 1 65 +0.050 16910
E1-16 0.13 850 10 16 1 145 +0.025 16910
E1-17 0.04 500 5 12 5 65 +0.050 13263
E1-18 0.13 500 5 12 5 145 +0.025 13263
E1-19 0.04 850 5 12 5 145 �0.025 22547
E1-20 0.13 850 5 12 5 65 �0.050 22547
E1-21 0.04 500 10 12 5 145 �0.050 13263
E1-22 0.13 500 10 12 5 65 �0.025 13263
E1-23 0.04 850 10 12 5 65 +0.025 22547
E1-24 0.13 850 10 12 5 145 +0.050 22547
E1-25 0.04 500 5 16 5 65 �0.025 9947
E1-26 0.13 500 5 16 5 145 �0.050 9947
E1-27 0.04 850 5 16 5 145 +0.050 16910
E1-28 0.13 850 5 16 5 65 +0.025 16910
E1-29 0.04 500 10 16 5 145 +0.025 9947
E1-30 0.13 500 10 16 5 65 +0.050 9947
E1-31 0.04 850 10 16 5 65 �0.050 16910
E1-32 0.13 850 10 16 5 145 �0.025 16910

Table 1
Factors and factor levels used in the DoE in experiment 1

Factors fz Vc ap diam ae HB Radius geom (1/radius)
Units mm/tooth m/min mm mm mm Brinell mm Island (�), pocket (+)

0.04 500 5 12 1 65 20 �0.050
0.04 500 5 12 1 65 20 +0.050
0.13 850 10 16 5 70 40 �0.025
0.13 850 10 16 5 70 40 +0.025

Table 3
Factors and factor levels used in the DoE in experiment 2

Factors fz diam ae HB geom (1/radius)
Units mm/tooth mm mm Brinell Convex (�), concave (+)

0.025 8 1 67 �0.042
0.050 10 2 92 �0.021
0.750 12 3 94 0
0.100 16 4 145 +0.021
0.130 20 5 152 +0.042
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(TAN). The first paradigm (Minsky, 1961) is the simplest model. It
is defined by the conjunction between the conditional indepen-
dence hypotheses of the predictor variables given the class, yield-
ing the following factorization to be substituted in Eq. (2):

PðxijcjÞ ¼ Pðxi1jcjÞ � � � PðxinjcjÞ

Although this assumption is violated on numerous occasions in real
domains, the paradigm still performs well in many situations
(Domingos & Pazzani, 1997; Hand & You, 2001).

The TAN classifier (Friedman, Geiger, & Goldszmit, 1997) ex-
tends the Naïve Bayes model with a tree-like structure across the
predictor variables. This tree is obtained by adapting the algorithm
proposed by Chow and Liu (1968) and calculating the conditional
mutual information for each pair of variables given the class.
3.2. Surface roughness modelling: a Bayesian network approach

As mentioned above, seven variables measured inside and out-
side the milling process were taken to construct the network struc-
ture. The average surface roughness, Ra, was chosen as the class
variable, and it was the only variable measured post-process.

Table 5 shows the variables used and the respective assigned
intervals. In our case we took the range from Mirror to Smooth
for Ra because it is only possible to obtain at most Smooth Ra val-
ues with the face milling operation and type of material (alumin-
ium) used in the experiments. The geom labels correspond to:
S = slot, Convex�� = convex geometry with greater angles, Con-
cave++ = concave geometry with greater angles, Convex� = convex
geometry with smaller angles and Concave+ = concave geometry
with smaller angles. Fig. 3 shows an example of these labels.

Fig. 4 shows the TAN structure we have learnt. It illustrates the
relationships and type of causal effect existing between its nodes.
This provides more information on the relationship of each vari-
able with the class and on the relationship among all predictor
variables than ANNs (see the next section), which work like a black
box. It is interesting to see how the physical relationship between
geom, fz and FXY is evident from the BN structure. Beyond the obvi-
ous dependence of all the variables on Ra, the geom and FXY vari-
ables are also influenced by the material hardness (HB). This kind



Table 4
Planning of experiment 2

Exp. fz (mm/tooth) diam (mm) ae (mm) HB (Brinell) geom (mm) rpm

E2-1 0.100 16 2 145 +0.021 18000
E2-2 0.100 10 4 145 +0.021 18000
E2-3 0.050 16 4 145 �0.021 18000
E2-4 0.100 16 4 92 �0.021 18000
E2-5 0.100 16 2 92 �0.021 18000
E2-6 0.100 10 2 92 +0.021 18000
E2-7 0.050 10 2 145 �0.021 18000
E2-8 0.050 10 4 92 +0.021 18000
E2-9 0.050 16 2 145 +0.021 18000
E2-10 0.100 10 4 145 �0.021 18000
E2-11 0.050 16 4 92 +0.021 18000
E2-12 0.050 10 2 92 �0.021 18000
E2-13 0.025 12 3 94 0.000 18000
E2-14 0.130 12 3 94 0.000 18000
E2-15 0.075 8 3 94 0.000 22500
E2-16 0.075 20 3 94 0.000 15000
E2-17 0.075 12 1 94 0.000 18000
E2-18 0.075 12 5 94 0.000 18000
E2-19 0.075 12 3 67 0.000 18000
E2-20 0.075 12 3 152 0.000 18000
E2-21 0.075 12 3 94 �0.042 18000
E2-22 0.075 12 3 94 0.042 18000
E2-23 0.075 12 3 94 0.000 18000
E2-24 0.075 12 3 94 0.000 18000
E2-25 0.075 12 3 94 0.000 18000
E2-26 0.075 12 3 94 0.000 18000

Fig. 2. Geometric design of the test profiles in experiment 2.

Table 5
Variables and intervals assigned

States Variables and domains

FXY (N) fz (mm/tooth) diam ae HB (Brin
[lower,upper) [lower,upper) mm mm [lower,u

0 [22,79) [0.0250,0.0460) 8 1 [65,92)
1 [79,88) [0.0460,0.0670) 10 2 [92,94)
2 [88,100) [0.0670,0.0880) 12 3 [94,94)
3 [100,148) [0.0880,0.1090) 16 4 [94,94)
4 [148, 178) [0.1090,0.1300] 20 5 [94,109)
5 [178, 208) [109,111
6 [208,228) [111,145
7 [228, 275) [145,152
8 [275, 324)
9 [324, 488]

Fig. 3. Example of the use the geometry labels in a profile.

7274 M. Correa et al. / Expert Systems with Applications 36 (2009) 7270–7279
of ‘‘discovery” is one of the aims of this paper because it cannot be
derived from any physical equation of the cutting process. More-
over, feed per tooth (fz) is directly related to HB. Finally, splindle
speed (rpm) and radial depth of cut (ae) depends probabilistically
ell) geom (mm) rpm Ra (lm)
pper) Label [lower,upper) [lower,upper) Label [lower,upper)

Convex�� [�50,�30) [15000,17500) Mirror [0.10,0.25)
Convex� [�30,�10) [17500,20000) Polished [0.25,0.35)
S [�10,10) [20000,22500) Ground [0.35,0.75)
Concave+ [10,30) Smooth [0.75,1.50)
Concave++ [30,50]

)
)
]



Fig. 4. Bayesian network using TAN algorithm.
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on the tool diameter (diam), since these variables are physically
associated with diameter.

TAN network learning also involves estimating all the condi-
tional probability distributions of each variable given its parents,
i.e. its quantitative part. See, for example, Table 6, which shows
the distribution of HB given Ra and fz. From any BN we can reason
in any direction, querying the network about any marginal proba-
bility or any posterior probability given some evidence
(observation).

4. Artificial neural network approach

An ANN is a mathematical or computational model based on
biological neural networks. It consists of an interconnected group
of artificial neurons and processes information using a connection-
ist approach to computation. In most cases an ANN is an adaptive
system that changes its structure based on external or internal
information that flows through the network during the learning
phase (Hecht-Nielsen, 1990).

An ANN usually organizes its units into several layers. The first
layer or input layer, the intermediate layers or hidden layers,
which are not always present because they are sometimes not
Table 6
Conditional probability table of PðHBjRa; fzÞ

fz 4 4 4 4 3 3 3 3 2 2
HB/Ra S G P M S G P M S G

7 0.12 0.12 0.12 0.12 0.84 0.12 0.12 0.12 0.12 0.12
6 0.12 0.12 0.12 0.12 0.02 0.12 0.12 0.12 0.12 0.12
5 0.12 0.12 0.12 0.12 0.02 0.12 0.12 0.12 0.12 0.12
4 0.12 0.12 0.12 0.12 0.02 0.12 0.12 0.12 0.12 0.12
3 0.12 0.12 0.12 0.12 0.02 0.12 0.12 0.12 0.12 0.12
2 0.13 0.13 0.13 0.13 0.02 0.13 0.13 0.13 0.13 0.13
1 0.13 0.13 0.13 0.13 0.03 0.13 0.13 0.13 0.13 0.13
0 0.14 0.14 0.14 0.14 0.03 0.14 0.14 0.14 0.14 0.14

Ra labels: S = smooth, G = ground, P = polished, M = mirror. HB and fz labels are shown i
needed, and the last or output layer. The information to be ana-
lyzed is presented (or fed) to the neurons of the first layer and then
propagated to the neurons of the second layer for further process-
ing. These results are propagated to the next layer and so on,
through to the last layer, converting the information into the net-
work output. The goal of an ANN is to discover some association
between input and output patterns.

4.1. Backpropagation algorithm

The backpropagation algorithm is a supervised learning meth-
od, an implementation of the Delta rule. It is more useful for
feed-forward networks (networks that have no feedback, or sim-
ply, that have no loop connections). The term is an abbreviation
for ‘‘backwards propagation of errors”. Backpropagation requires
all transfer functions used by the artificial neurons (or ‘‘nodes”)
to be differentiable (Hagan, Demuth, & Beale, 1996).

Backpropagation is used to calculate the error gradient of the
network with respect to its modifiable weights. This gradient is al-
most always used in a simple stochastic gradient descent algo-
rithm to find weights that minimize the error. Backpropagation
may have practical problems of getting trapped in local minima
and knowing when the procedure has converged.

It is important to note that backpropagation networks are nec-
essarily multilayer perceptrons (MLP) usually with one input, one
hidden, and one output layer. They can be represented as a
function

ck ¼ fk ak þ
X
j!k

wjkfj aj þ
X
i!j

wijxi

 ! !

where wij (wjk resp.) are the weights that connect input i to the hid-
den layer k (connect hidden layer j to the output layers k, resp.), a
are the biases and f are the activation functions.

For the hidden layer to provide a useful function, multilayer
networks must have non-linear activation functions for the multi-
ple layers: a multilayer network using only linear activation func-
tions is equivalent to some single layer, linear network. Commonly
used non-linear activation functions include the logistic function,
the softmax function, and the Gaussian function.

The backpropagation algorithm for calculating a gradient has
been rediscovered a number of times and is a special case of a more
general technique called automatic differentiation (AD) (Griewank,
2000). Fundamental to AD is the decomposition of differentials
provided by the chain rule. For the simple composition
f ðxÞ ¼ gðhðxÞÞ, the chain rule gives df

dx ¼
dg
dh

dh
dx. There are usually

two distinct AD modes, forward accumulation (or forward mode)
and reverse accumulation (or reverse mode, which is used for the
backpropagation algorithm). Forward accumulation specifies that
one traverses the chain rule from right to left, that is, dh

dx is com-
puted first and next dg

dh, and reverse accumulation traverses from
left to right.
2 2 1 1 1 1 0 0 0 0
P M S G P M S G P M

0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.15
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

n Table 5.
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4.2. Surface roughness modelling: An artificial neural network
approach

To build an ANN, the same data set was used with the same
variables as in the above BN.

We built an MLP network with a 7–11–4 topology, i.e. seven in-
put nodes, a hidden layer of eleven neurons and a final output layer
with four neurons providing the predicted Ra class. As noted above,
we had already used this network successfully in the milling pro-
cess (Correa, 2003). The parameters were set as: a sigmoid function
activation in all layers, momentum 90% and learning rate 1%. The
input variables used in the first layer are the same input variables
as in the BN and the output layer corresponds with the four states
of the Ra class, see Fig. 5.
5. Comparison study: Bayesian networks vs. artificial neural
networks

In this section, we compare the two classifiers, BNs and ANNs,
assuming that the aim of a classification model is to correctly clas-
sify new cases.

5.1. Experimental setting and performance measures

Models should not be validated on the same data used to create
the classifier. Accordingly, the K-fold cross-validation method was
chosen (Stone, 1974). The original sample is partitioned into K dis-
joint subsamples. Of the K subsamples, a single subsample is re-
tained as the validation data for testing the model, and the
remaining K � 1 subsamples are used as training data. The cross-
validation process is then repeated K times (the folds), with each
of the K subsamples used exactly once as the validation data. Then,
the K results from the folds are averaged (or otherwise combined)
to produce a single estimate of the classifier accuracy. In both mod-
els we chose K ¼ 10 and the same seed in the selection of random-
ness for determining the folds. Thus, we have the same folds for
both classifiers and therefore the classification results can be con-
sidered as paired samples.

There are several statistical tests for comparing a performance
measure of two classifiers over a single data set (Demšar, 2006).
Fig. 5. Artificial neural network usi
Also, there are several performance measures to compare the
goodness of a classifier. Here, we use the classification accuracy
or percentage of correctly classified observations. Finally, we ana-
lyse the interpretability of both models.

5.1.1. Classification accuracy
The confusion matrices show the classifier accuracy, see Tables

7 and 8. This is the honest estimate of the true error rate, i.e. an
indicator of how good the classifier is or the probability of it clas-
sifying new cases correctly. The BN appears to output better results
than the ANN classifier, with an accuracy of 96.3% and 94.8%,
respectively. Looking closer at each Ra class, most classes of the
BN classifier outweigh those of the ANN. Note that the BN correctly
classifies 100% of the cases with a Smooth Ra whereas the ANN
only manages 89%. Ground Ra behaves similarly: only one case is
misclassified by the BN, against nine cases misclassified by the
ANN. The same situation is exhibited for Polished Ra with 17 cases
misclassified by the BN (3.4%) compared to the 30 cases misclassi-
fied by the ANN (6%). Only for Mirror Ra, were the ANN results
slightly better with a 94% accuracy against 92.5% for the BN.

Table 9 summarises the measures of merit of each classifier. The
formulas for calculating the indicators are as follows:

TP Rate ¼ TP
TPþ FN

FP Rate ¼ FP
TNþ FP

Recall ¼ TP Rate

Precision ¼ TP
TPþ FP

� 100

F-measure ¼ 2 � Recall � Precision
Recallþ Precision

Accuracy ¼ TPþ TN
TPþ FNþ FPþ TN

Kappa ¼ PðAÞ � PðEÞ
1� PðEÞ

where TP = True Positive, TN = True Negative, FP = False Positive and
FN = False Negative

The Kappa statistic includes measures of class accuracy within
an overall measurement of classifier accuracy. It is a better
ng backpropagation algorithm.



Table 7
Confusion matrix using BN

REAL ? Smooth Ground Polished Mirror

ASSIGNED ;
Smooth 18 (100%) 0 0 0
Ground 0 359 (99.7%) 1 (0.3%) 0
Polished 0 2(0.4%) 493 (96.6%) 15 (3%)
Mirror 0 0 28 (7.5%) 346 (92.5%)

Table 8
Confusion matrix using ANN

REAL ? Smooth Ground Polished Mirror

ASSIGNED ;
Smooth 16 (89%) 0 2 (11%) 0
Ground 1 (0.5%) 351 (97.5%) 8 (2%) 0
Polished 2 (0.4%) 3 (0.6%) 480 (94.8%) 25 (5%)
Mirror 0 2 (0.5%) 22 (5.5%) 350 (94%)

Table 9
Summary of the measures of merit for each classifier

Measure BN ANN

Correctly classified instances 1216 (96.35%) 1197 (94.84%)
Incorrectly classified instances 46 (3.64%) 65 (5.15%)
Kappa statistic 0.94 0.92
Mean absolute error (MAE) 0.03 0.04
Root mean squared error (RMSE) 0.13 0.14
Relative absolute error (RAE) 10.41% 13.05%
Root relative squared error (RRSE) 32.66% 33.70%
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measure of classifier accuracy than overall accuracy because it con-
siders inter-class agreement.

Kappa is computed as PðAÞ�PðEÞ
1�PðEÞ , where PðAÞ is the observed agree-

ment among the predicted and the observed class, and PðEÞ is the
expected agreement, that is, PðEÞ represents the probability that
this agreement is by chance. The values of Kappa are constrained
to the interval [�1,1]. A Kappa value of 1 means perfect agreement,
a Kappa value of 0 means that agreement is equal to chance, and
a� 1 Kappa value means ‘‘perfect” disagreement.

Note that the BN classifier outputs better indicators than the
ANN classifier, reflected not only in the Kappa statistic, but in the
lower MAE and RMSE rates.
Fig. 6. Detailed acc
A more detailed accuracy per Ra class is shown in Fig. 6. The so-
lid color bars correspond to the BN model, while the dotted bars
correspond to the ANN model. Note that although the ‘‘Accuracy”
appears to be quite similar with both classifiers, the BN reports
better performance measures than the ANNs.

However, the role of randomness must be evaluated and mea-
sured by conducting hypothesis tests to determine the statistical
significance of our performance estimates. We use two statistical
tests to determine whether one learning algorithm outperforms
the other one on the surface roughness prediction task.

First, we took our K-fold cross-validated paired results. A single
tailed paired t-test yielded a p-value of �0.001. The null hypothesis
was that the mean accuracy of the BN classifier is equal to the
mean accuracy of the ANN classifier. The p-value indicates that
the null hypothesis should be rejected, concluding that BN accu-
racy is statistically superior to ANN accuracy. The values for
obtaining these results are shown in Table 10, where pA

i ðpB
i Þ is an

estimation of the probability of correctly classifying new cases
when the BN (ANN, respectively) has been tested using fold i
(the rest of data were used as training data).

Additionally, we also calculated the McNemar test based on a v2

test of goodness-of-fit that compares the distribution of counts ex-
pected under the null hypothesis to the observed counts. Under the
null hypothesis, the two algorithms should have the same error
rate, which means that n01 ¼ n10, see Table 11.

If the null hypothesis is true, the following statistic is distrib-
uted as a v2 distribution with 1 degree of freedom. It incorporates
a Yates’ correction for continuity to account for the fact that the
statistic is discrete while the v2 distribution is continuous:

ðjn01 � n10j � 1Þ2

n01 þ n10
¼ ðj6� 25j � 1Þ2

6þ 25
¼ 10:45

This result provides a p-value�0.05. So the null hypothesis can be
rejected in favor of the hypothesis that the two algorithms perform
differently, and BN is superior.

5.1.2. Interpretability
ANNs have the disadvantage of not having symbolic reasoning

and semantic representation. An ANN generally takes the shape
of a ‘‘black box” model in the sense that the non-linear relation-
ships of cause and effect are not easily interpretable, making it dif-
ficult to explain the results.
uracy by class.



Table 10
Summary of the paired t-test

Fold BN ANN BN - ANN
i pA

i pB
i pA

i � pB
i

1 0.94338 0.93224 0.01114
2 0.96905 0.94576 0.02328
3 0.94842 0.95018 �0.00175
4 0.96994 0.94024 0.02971
5 0.97331 0.93801 0.03531
6 0.96095 0.93166 0.02929
7 0.95064 0.91633 0.03430
8 0.95805 0.91207 0.04598
9 0.95805 0.94543 0.01261
10 0.94153 0.93926 0.00227
Mean 0.02221
Standard deviation 0.01555
t 4.51683

Table 11
Contingency table for McNemar test

Number of examples misclassified by
both BN and ANNn00 ¼ 38

Number of examples misclassified by BN
but not by ANN n01 ¼ 6

Number of examples misclassified by
ANN but not by BN n10 ¼ 25

Number of examples misclassified by by
neither BN nor ANN n11 ¼ 1193
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On the other hand, the main advantage of BNs is that reasoning
is based on a real-world model. The system has a thorough under-
standing of the processes involved, rather than just a mere associ-
ation of data and assumptions. This is combined with a strong
probabilistic theory enabling BNs to give an objective
interpretation.

We can ask a BN questions involving observations or evidence
in order to find the posterior probability of any variable or set of
variables given some evidence. This makes different types of rea-
soning possible.

One type of question is predictive reasoning or causal inference.
For example, we may ask ‘‘What is the probability of each Ra class
given certain manufacturing requirements?” This is a prediction of
effects. If we need to produce a 40 mm radius piece of aluminium
with HB 67 Brinell and concave geometry (geom is Concave++), we
would ask the BN to compute PðRajHB ¼ 67; geom ¼ ConcaveþþÞ.
Propagating this evidence, the network computes the following Ra
probabilities: Mirror with a probability of 0.25, Polished with a
probability of 0.57, Ground with a probability of 0.01, and Smooth
with a probability of 0.17. With these requirements the highest
probabilities give good qualities. This reasoning is correct since it
corresponds with values obtained in experimental tests.

We can also ask diagnostic reasoning questions, like ‘‘What are
the probabilities of unobserved variables if Ra is restricted?” Sup-
pose then that we need to manufacture a piece with Ra = Mirror,
and we want to know which are the model recommendations
regarding geom, HB and fz to achieve that Ra class. We should com-
pute Pðgeom;HB; fzjRa ¼MirrorÞ. Moreover, another advantage of
BNs is the possibility of finding the most likely explanation or
abductive inference. In our case, we look for the configurations of
those three variables with the highest probability. The network
recommendation for obtaining this Ra state is to manufacture
pieces with soft hardness, 65–92 Brinell, geometry in convex++
and fz value in [0.08,0.10) with a probability of 0.22. On the other
hand, if we need to manufacture a piece with Ra = Ground, we ask
the BN about Pðgeom;HB; fzjRa ¼ GroundÞ. The network recom-
mendation is medium hardness, 94-109 Brinell, geometry in slots
and fz value in [0.04,0.06) with a probability of 0.56.

A total abduction finds the configuration of all the unobserved
variables that maximize the evidence probability, e.g.
arg maxx1 ;...;xn Pðx1; . . . ; xnjRa ¼ MirrorÞ. In this case, the most likely
configuration is diam at 12 mm, ae at 2 mm, HB at medium hard-
ness, 109–111 Brinell, FXY ranging from 324 to 488 N, geom in slots,
fz in [0.06,0.08) mm/tooth and rpm at low revolutions, from 15000
to 17500 rpm. This means that for obtaining a piece with Ra=Mir-
ror, the previous configuration is the most likely configuration of
the remaining seven variables.
6. Conclusions and discussion

An ANN is a model often used to predict surface quality in
machining processes. In this paper, we propose using BNs instead,
showing a number of advantages over ANNs and extending the
application domain to include features, not easily found in the
experimental studies, that influence surface roughness, like the
geometry of the workpiece and the hardness of material to be
machined.

After validating both models with the same data and technique
(K-fold cross-validation), BNs achieve the best results from the
point of view of classifier goodness applied to the problem of qual-
ity prediction in high-speed milling processes. The results have
been confirmed by several hypothesis tests.

As for the time it takes to build the model, BNs also outperform
ANNs, requiring 0.08 CPU seconds and 12.69 CPU seconds, respec-
tively, on a 3 GHz, 1.5 GB Dell Dimension PC.

The ANN optimization procedure does not guarantee the con-
vergence to a global minimum. There are no principled methods
of choosing the network parameters (number of hidden layers,
number of nodes in the hidden layer(s), form of activation func-
tions). On the other hand, BNs have an easy and fast construction
procedure without tuning parameters. Note in favor of ANNs, that
the memory requirements, represented by parameters in an ana-
lytical form, are smaller than for BNs, represented by tabular con-
ditional probability tables. However, this is not such a relevant
question nowadays where computer memory is cheap and
extensive.

Relative speeds of operation follow the same pattern. Thus,
the BN can be easily implemented as a simple table
look-up, and it is intrinsically fast. However, the ANN requires
a number of multiplications and additions at evaluation time,
rendering it comparatively slow if high intensity predictions
are required.

Both classifier models are simple to use, but BNs can be more
easily understood by humans. ANN models work like a black
box. In contrast, friendly and intuitive BNs help users to update
models and increase the confidence in the correctness of the
model to be finally adopted. Finding factors that determine sur-
face roughness can help to optimize high-speed milling, which is
extensible to other industrial applications. Moreover, BNs
support inference in any direction providing responses to any
kind of query, not only about surface roughness but also, given
some evidence, about different predictor variables. Because they
capture these different types of reasoning to infer knowledge,
BNs are useful models with significant representation power.
From the comparison performed here, BNs are preferred over
ANNs.
Acknowledgements

We would like to thank Miguel Ramírez and Antonio Vallejo
specially for their help in conducting the experiments.

This work was partially supported by the MOCAVE Project un-
der Grant DPI2006-12736-C02-01 and by the Spanish Ministry of
Education and Science, Project TIN2007-62626.



M. Correa et al. / Expert Systems with Applications 36 (2009) 7270–7279 7279
References

Aboulatta, O. B., & Mádl, J. (2001). Surface roughness prediction based on cutting
parameters and tool vibrations in turning operations. Journal of Materials
Processing Technology, 118, 269–277.

Antal, P., Fannes, G., Timmerman, D., Moreau, Y., & de Moor, B. (2003). Bayesian
applications of belief networks and multilayer perceptrons for ovarian tumor
classification with rejection. Artificial Intelligence in Medicine, 29, 39–60.

Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in
machining: A review. International Journal of Machine Tools and Manufacture,
43, 833–844.

Boothroyd, G., & Knight, W. A. (1989). Fundamentals of machining and machine tools.
NY: Marcel Dekker.

Castillo, E., Gutiérrez, E., & Hadi, A. S. (1997). Expert systems and probabilistic network
models. NY: Springer.

Chen, J. C. (2000). An effective fuzzy-nets training scheme for monitoring tool
breakage. Journal of Intelligent Manufacturing, 11, 85–101.

Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions.
IEEE Transactions on Information Theory, 14, 462–467.

Correa, M. (2003). A survey of artificial intelligence techniques applied to the modeling
of milling process. Master thesis, Universidad Politécnica de Madrid, Madrid (in
Spanish).

Correa, M., Bielza, C., Ramírez, M. de J., & Alique, J. R. (in press). A Bayesian network
model for surface roughness prediction in the machining process. International
Journal of Systems Science.

Demšar, J. (2006). Statistical comparison of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 1–30.

Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian
classifier under zero–one loss. Machine Learning, 29, 103–130.

Feng, C. X., & Wang, X. F. (2003). Surface roughness predictive modelling: Neural
networks versus regression. IIE Transactions, 35, 11–27.

Friedman, N., Geiger, D., & Goldszmit, M. (1997). Bayesian network classifiers.
Machine Learning, 29, 131–161.

Griewank, A. (2000). Evaluating derivatives: Principles and techniques of algorithmic
differentiation. SIAM.

Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural network design. Boston,
MA: PWS Publishing Company.

Hand, D., & You, K. (2001). Idiot’s Bayes – Not so stupid after all? International
Statistical Review, 69, 385–398.

Hecht-Nielsen, R. (1990). Neurocomputing. Addison-Wesley.
Huang, B., & Chen, J. C. (2003). An in-process neural network-based surface

roughness prediction (INN-SRP) system using a dynamometer in end milling
operations. International Journal of Advanced Manufacturing Technology, 21,
339–347.
ISO 1302:2002, Geometrical Product Specifications (GPS) – Indication of surface
texture in technical product documentation.

Kirby, D., Chen, J. C., & Zhang, Z. (2006). Development of a fuzzy-nets-based in-
process surface roughness adaptive control system in turning operations. Expert
Systems with Applications, 30(4), 592–604.

Kirby, D., Zhang, Z., & Chen, J. C. (2004). Development of an accelerometer-based
surface roughness prediction system in turning operations using multiple
regression techniques. Journal of Industrial Technology, 20(4), 1–8.

Lou, J., & Chen, J. C. (1997). In-process surface recognition of a CNC milling machine
using the fuzzy nets method. Computers and Industrial Engineering, 33(1–2),
401–404.

Lou, J., & Chen, J. C. (1999). In-process surface roughness recognition (ISRR) system
in end-milling operations. International Journal of Advanced Manufacturing
Technology, 15(3), 200–209.

Lou, J., Chen, J. C., & Li, C. M. (1999). Surface roughness prediction technique for CNC
end-milling. Journal of Industrial Technology, 15(1), 1–6.

Marchant, J. A., & Onyango, C. M. (2003). Comparison of a Bayesian classifier with a
multilayer feed-forward neural network using the example of plant/weed/soil
discrimination. Computers and Electronics in Agriculture, 39, 3–22.

Minsky, M. (1961). Steps toward artificial intelligence. Transactions on Institute of
Radio Engineers, 49, 8–30.

Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology: Process and
product optimization using designed experiments. Wiley & Sons.

Neapolitan, R. E. (2004). Learning Bayesian networks. Prentice Hall.
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