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Abstract

Due to the huge size of the tables we manage when dealing with real decision-making problems under uncertainty,

we propose turning them into minimum storage space multidimensional matrices. The process involves searching for

the best order of the matrix dimensions, which is a NP-hard problem. Moreover, during the search, the computation of

the new storage space that each order requires and copying the table with respect to the new order may be too time

consuming or even intractable if we want a process to work in a reasonable time on an ordinary PC. In this paper, we

provide efficient heuristics to solve all these problems. The optimal table includes the same knowledge as the original

table, but it is compacted, which is very valuable for knowledge retrieval, learning and expert reasoning explanation

purposes.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The Decision Support Systems (DSS) now in
demand are very complex knowledge-based sys-

tems. Based on the Decision Analysis discipline,

see, e.g., Raiffa (1968), their construction involves

structuring the decision-making problem (using
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modern graphical models like influence diagrams,

see Shachter, 1986), eliciting uncertainty and

preferences (using probability and utility models,
see Keeney and Raiffa, 1993), and solving the

problem. Although all these tasks are difficult, we

shall go one step further.

Once we have solved the problem, we have one

decision table per decision variable, containing its

optimal alternatives, i.e. the alternatives of maxi-

mum expected utility. In general, a decision table

can be considered as a set of attributes or variables
that determine an action, alternative or policy. The

table grows exponentially with the number of

attributes. In real problems, each table may have up
ed.

mail to: jafernandez@fi.upm.es


J.A. Fern�andez del Pozo et al. / European Journal of Operational Research 160 (2005) 638–662 639
to millions of rows (each attribute configuration)
and typically more than twenty columns (attri-

butes), the results of the problem thereby relying on

a combinatorial knowledge representation space.

Storing and managing so much information is

not the only problem that arises. Decision-makers

use the decision tables to query which is the best

recommendation for a certain case or attribute

configuration. Indeed, these tables are very impor-
tant for this purpose. However, decision-makers

demand DSSs that provide clear, concise, consis-

tent and complete explanations that translate the

reasoning mechanism (underlying the table con-

tent) into their domain to justify the decisions

proposed. The explanation should give a descrip-

tion of why the proposed decision is optimal and

new insights into the problem solution. This kind
of knowledge synthesis will also serve for validat-

ing the system.

In fact, a system providing good explanations is

very hard to build (Henrion et al., 1991). The main

reasons are: explanations should be presented

from all the possible points of view in a structured

and hierarchical way, with different levels for users

and analysts; they should only employ knowledge
from the user domain; they should be as general as

possible and emphasise the evidence of the pres-

ence (absence) of arguments in favour of (against)

the proposal.

Despite these difficulties, in this paper we show

how they can be addressed, resulting in useful

systems for real problems.

So-called learning from data is a general goal
pursued by a number of disciplines for extracting

important patterns and trends and understanding

what the data say. Therefore, it is easy to imagine

that our proposal in this paper may bear some

resemblance to some such techniques. For exam-

ple, the aim of (supervised) classification from

Machine Learning is to learn a mapping from a

vector of attributes to a class variable. In our case,
this variable is the optimal alternative from the

decision-making problem. Tree-based classifiers,

such as CART (Breiman et al., 1993), ID3 (Quin-

lan, 1986), C4.5 (Quinlan, 1993), have proved to be

particularly useful with non-metric data and with-

out prior information about the appropriate form

of classifier (Duda et al., 2001).
However, our approach is quite different. Our
method is based on a list-based structure rather

than on a tree-based structure. The search for good

candidates is global, involving the whole attribute

set, while trees use a greedy local search over struc-

tures. Avoiding the hierarchism of the tree-building

process, we overcome the typical instability found

in the trees with regard to small changes (see Hastie

et al., 2001). On the other hand, tree-classifiers are
very flexible and can be used with every data type

(metric, non-metric, or in combination). Our

methodology will be limited to finite data.

In this paper, the central idea is that the table

content is not knowledge unless it is organised

somehow, like a torn book is knowledge only when

it has been properly stuck together and repaired.

Unlike classification trees, our list does not have to
be built, it has to be reorganised. Trees aim at

maximising a score of class purity, which does not

make any sense for our ‘‘classifier’’, because it does

not yield misclassifications. All the cases

are already correctly classified, and we want to

explain why they are classified like this. We trans-

late this problem into finding the shortest list. In a

sense, we work with full trees, which are
later ‘‘pruned’’ when we find sets of cases that share

certain information values (see Section 2.3 below),

providing just the sought-after explanations.

Also, the tables were originally collected for a

purpose other than the explanations we seek, i.e.

they are the influence diagram evaluation output.

Thus, data were not collected using efficient

strategies to answer specific questions; they are
observational data as opposed to experimental

data. Moreover, the rows of our tables range over

all the attribute configurations. It means that they

cannot be repeated, obviously not being the clas-

sical carefully selected laboratory training sample

found in Machine Learning and Statistics. Hence,

missing values arise only in the class variable,

unlike tree-based methods which have missing
values in the attributes. This occurs when the

decision tables only include a subset of the whole

problem solution due to computational problems,

leading to unknown policies. We will see below

how to deal with these values.

This discussion suggests setting our framework in

the Data Mining field, see, e.g., Hand et al. (2001).
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Data mining is a rapidly growing interdisciplinary
area of tools in which Machine Learning, Pattern

Recognition, Database Technology, Statistics,

among others, play a role. Moreover, it can be

seen as part of the overall process of knowledge

discovery in databases (Fayyad et al., 1996). Al-

though rarely documented outside the database

literature, the typical massive data sets in Data

Mining demand explicit specification of the data
management strategies (the way in which the data

are stored, indexed, accessed,. . .). This paper will

account for this as well.

We find another possible connection between

our approach and rough sets (Pawlak, 1991, 1997).

Rough sets have been used for rules induction

(Machine Learning) or as a technique for elimi-

nating redundant information (data analysis). The
rough set criterion has been shown to be a special

case of the entropy criterion used by ID3 (Wong

et al., 1986). The rough set algorithm is based on

set theory and topology and it is an inductive

learning algorithm. We are more interested in a

deductive algorithm. Also, our approach groups

cases with the same class (like the class rela-

tion in rough sets) and with the same attri-
bute value (like the equivalence relation in rough

sets), although differently. Our groups are pure;

all the cases belong to the same class, whereas

rough sets approximate the classes partly via the

upper subsets, which mix cases from various

classes.

The paper is organised as follows. Imitating

the way computers manage multidimensional
matrices, Section 2 defines a new list-based

structure for storing the decision tables. The list

basically searches for an organisation of the

decision table columns that minimises storage

space. Section 3 offers two heuristics to guide the

search for the optimum organisation: a variable

neighbourhood algorithm and a genetic algo-

rithm. The performance of each one is tested via
some illustrative experiments. Regardless of the

chosen searching process, the information needs

to be copied to a new table with differently or-

dered columns although this is not feasible if

there are a lot of columns. Section 4 deals with

this issue and it also provides a test to quickly

check whether the new table is better than the old
one. As an added value, the final compact table
will also explain the DSS proposals. Obviously,

the methodology is not only applicable to deci-

sion tables, as suggested in the last section.
2. Synthesised tables using KBM2L lists

2.1. KBM2L lists

In an attempt to prevent some decision tables

exceeding the storage capacity of any personal

computer, we express their contents by means of

another representation.

The set of attributes of a table will be called

schema. If we impose an order on the components

of the schema (attributes), a base is a vector whose
elements are these attributes. A change in this or-

der modifies the position of the variables in the

schema, but not the proposals of the DSS. Also,

since we work in discrete attribute domains, we

assume an order, natural or conventional, in the

values of every domain. So, an index is a vector

whose elements are the values of the attributes of

the base. The index could be interpreted as the
coordinates with respect to the base.

By defining an order in the schema attributes

and in the domains, we can consider the decision

tables as multidimensional matrices (MM). So, the

content of the table stored in the cell with coor-

dinates ~c ¼ ðc0; c1; . . . ; cnÞ will be assigned to the

position MM½c0; c1; . . . ; cn�. For the ith attribute

ði ¼ 0; 1; . . . ; nÞ, let Di denote the cardinal of its
domain and

Qn
j¼iþ1 Dj its weight wi.

Computers manage multidimensional matrices

as lists (Knuth, 1968), where each position is a

function of the order chosen for the matrix

dimensions. Namely, the values are ordered by

means of an application like f : Rnþ1 ! R, where

f ðc0; c1; . . . ; cnÞ

¼ c0
Yn
i¼1

Di þ c1
Yn
i¼2

Di þ � � � þ cn ¼ q ð1Þ

provides the offset q of a value with respect to the

first element of the table in a given base. The MM

values will be stored successively in a computer,

where only the memory address of the first one is

known and the offset depends on the base.



<(0,0) <(1,0) <(2,0) <(3,0) <(4,1),

<(5,1) <(6,1) <(7,1) <(8,1) <(9,1),

<(10,2) <(11,1) <(12,1) <(13,2) <(14,2),

c1

0 1 2 3 4

c0 0 0 0 0 0 1

1 1 1 1 1 1
2 2 1 1 2 2
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The vector of weights is ~w ¼ ðw0;w1; . . . ;wnÞ
with wk ¼ wkþ1Dkþ1, wn ¼ 1 and k ¼ 0;1; . . . ;n	 1.

The weights are the coefficients that multiply the

coordinates in (1), like the radix powers in the

number value expression (algebraic interpreta-

tion). From the point of view of memory positions

allocation and access, weight wi is the number of

cells separating two values that only differ one unit

in the ith coordinate (geometric interpretation), i.e.
the values

ðc0; c1; . . . ; ci; . . . ; cnÞ and

ðc0; c1; . . . ; ci þ 1; . . . ; cnÞ:

We can use relationship (1) to access all the

values. Given a cell~c, we can compute its memory

position and retrieve its value. Conversely, the

index of the cell can be built from the position,

provided the base (the order of the attributes) is
known.

Let us take the adjacent cells of the list for

which the DSS proposes the same action. The

resulting grains of knowledge or sets of cases with

the same optimal policy will be called items. The

basic idea is that if the content of the table presents

some level of granularity, we can store only one

value for each group of cases, as sparse matrices
do.

With another base, we have the same knowl-

edge in the table but we change the granularity

and, hence, the memory requirements to store the

final list of items. The objective is to get a base that

minimises the number of items, bringing up the

grains of knowledge. These will also serve as a

means of explanation, finding relationships be-
tween groups of attributes and the proposals of the

DSS.

For example, let the content of a decision table

be represented and stored as the list

< ð0; ]Þ < ð1; ]Þ < � � � < ðp 	 1; yÞ;

< ðp; xÞ < � � � < ðq; xÞ < ðqþ 1; zÞ < � � �
< ðw0D0 	 1; ]Þ;

where each cell of the table is represented as the

pair (offset, policy), w0 is the weight of the first

attribute, D0 is the cardinal of its domain, the sign

< shows the order among the memory positions
used to store the pair, and ] denotes any policy

value. Let us suppose the cells between positions p
and q, where p < q, contain the same policy x, as
above.

The new list we propose for this table will

include all the cases at the positions between p and
q (p and q included) in only one item, saving

memory space. Thus, the fragment of the list
< ðp 	 1; yÞ < ðp; xÞ < � � � < ðq; xÞ collapses as

< p 	 1; yj < q; xj. The notation < offset; policyj
reflects two ideas. Firstly, the offsets of the items

are strictly increasing and, secondly, it summarises

a set of adjacent cells with the same policy, which

is, at the same time, different from the proposal of

the next item.

This list will be called KBM2L list. The name
stands for a Multidimensional Matrix whose con-

tent is a Knowledge Base (which is a more general

structure than a decision table), that is trans-

formed into a List (KBMMtoL�KBM2L), i.e. a

list of a KBMM. This list must be consistent in the

following sense: all the offsets are non-negative

and smaller than the maximum w0D0 	 1, they are

in strictly increasing order, and the policy of
adjacent contexts is different (if the policies were

identical, the cases would be joined into a single

item).

Example 1. Let us take the matrix in the base

½c0; c1�:
Its linear storage in memory can be represented by

offsets:
The derived KBM2L list has 5 items:

< 3; 0j < 9; 1j < 10; 2j < 12; 1j < 14; 2j
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in offset notation, or

< ð0; 3Þ; 0j < ð1; 4Þ; 1j < ð2; 0Þ; 2j < ð2; 2Þ; 1j
< ð2; 4Þ; 2j

in indices notation. Note that the other base ½c1; c0�
has 12 items.
Table 1

Partial decision table (X0 ¼ 0)

X0 X1 X2 Offset Policy

0 0 0 0 B
0 1 0 2 B
0 1 1 3 A
0 0 1 1 A
2.2. Constructing the KBM2L associated with a

decision table

The construction process of a KBM2L list from

a decision table starts with an empty list, i.e. with

an item representing the complete absence of

knowledge, denoted as )1. Thus, the list is

< w0D0 	 1;	1j.
Each state of the list is different as new cases are

added to it. Thus, we have developed software that

employs up to 26 rules for item management. Each
rule studies what the KBM2L list of items is like

before and after applying the rule.

For example, R24 is one of the rules addressing

an insertion into contexts in the generic list: if the

list is

� � � < qiþ1; diþ1j < qiþ2; diþ2j < qiþ3; diþ3j � � �
and a new case < x; dj is to be inserted, with

qiþ2 < x < qiþ3; x	 1 ¼ qiþ2; d 6¼ diþ2;

d 6¼ diþ3

then the new list is

< qiþ1; diþ1j < qiþ2; diþ2j < x; dj < qiþ3; diþ3j:

This rule increases the list size, although this is not

true for every rule.

Once we have built the KBM2L list and we

know how to manage its items by following the

rules, the list must be optimised. Namely, we look

for the order of the schema of attributes or base
that minimises the number of items stored for a

given matrix. It would imply a change of base,

possibly involving copying all the information,

and a procedure to guide the search for the best

base. Sections 3 and 4 will look into this subject in

more depth.

But the process has more complications. The

decision tables yielded by solving the decision-
making problem usually come from the solution of
a subproblem, i.e. they are partial tables. The
complete evaluation may be so costly (in terms of

time and memory requirements) that we actually

solve a complete set of subproblems, each one as

the result of instantiating some attributes (Ezawa,

1998). Therefore, these tables do not have all the

combinations of the attributes.

Thus, the complete process consists of: (1) all

the subproblems are evaluated (sequentially or in
parallel) and the partial tables are stored in files;

(2) the first partial table is translated into a

KBM2L list; (3) the second partial table is added

to the list built beforehand and by means of a

learning mechanism. This means that it is advis-

able to optimise the list while new knowledge is

being introduced into the list (i.e. before reading

the next table). Each stage in the addition process
involves an organisation of items (and thereby of

attributes) that facilitates future additions. (4) We

continue with the following partial table, collecting

all the partial results at the end to shape a real

decision table. Lastly and obviously, the final list is

optimised.

Example 2. By way of an illustration, let us take a
simple decision problem with its knowledge stored

in two decision tables. The table schema has three

attributes fX0;X1;X2g, the base is [0,1,2] and all the

domains are binary (values 0 and 1). fA;B;Cg is

the set of alternatives. The first table, see Table 1,

is the evaluation output of the instance with X0 ¼ 0

and the second one, see Table 2, with X0 ¼ 1.

The initial empty list is < 7;	1j. The procedure
begins with the translation of one table to the

KBM2L. Let us take Table 1. We read each case of

the table and insert the cases one by one into the

KBM2L, see Table 3. Note how fragmented the list

is, with 5 items. Next we optimise this list. Since it

is a very small example, we can test all the possible



Table 2

Partial decision table (X0 ¼ 1)

X0 X1 X2 Offset Policy

1 0 1 5 C
1 1 0 6 C
1 0 0 4 A
1 1 1 7 C

Initial list

< 0;Bj < 1;Aj < 2;Bj < 4;Aj < 7;Cj½0;1;2�
Final list

< 1;Bj < 4;Aj < 7;Cj½0;2;1�

J.A. Fern�andez del Pozo et al. / European Journal of Operational Research 160 (2005) 638–662 643
solutions (3!¼ 6). The best base is [0,2,1], with an

associated list of 3 items: < 1;Bj < 3;Aj <
7;	1j½0;2;1�. Note the base is shown as a subscript

for clarity.

Table 4 illustrates how the other partial results

(the second table) are added to the optimised list of

three items.

The last step is the optimisation of the final list.

Since there are three alternatives and we have three

items, the last list is the best one. Note the differ-
ences between the first list and the final list:
Table 3

From a table to a KBM2L

Case in offset q! KBM2L

ðð0; 0; 0Þ;BÞ in offset 0 !< 0;Bj < 7;	1j

ðð0; 1; 0Þ;BÞ in offset 2 !< 0;Bj < 1;	1j < 2;Bj < 7;	1j

ðð0; 1; 1Þ;AÞ in offset

3 !< 0;Bj < 1;	1j < 2;Bj < 3;Aj < 7;	1j

ðð0; 0; 1Þ;AÞ in offset

1 !< 0;Bj < 1;Aj < 2;Bj < 3;Aj < 7;	1j

Table 4

Adding the second table to the list

Case in offset q! KBM2L

ðð1; 0; 1Þ;CÞ in offset 5½0;1;2� and

6½0;2;1� !< 1;Bj < 3;Aj < 5;	1j < 6;Cj < 7;	1j½0;2;1�
ðð1; 1; 0Þ;CÞ in offset 6½0;1;2� and

5½0;2;1� !< 1;Bj < 3;Aj < 4;	1j < 6;Cj < 7;	1j½0;2;1�
ðð1; 0; 0Þ;AÞ in offset 4½0;1;2� and

4½0;2;1� !< 1;Bj < 4;Aj < 6;Cj < 7;	1j½0;2;1�
ðð1; 1; 1Þ;CÞ in offset 7½0;1;2� and

7½0;2;1� !< 1;Bj < 4;Aj < 7;Cj½0;2;1�
2.3. Index parts for explanation purposes

We have shown how the size of a decision table

can be compacted using KBM2L lists, still

including the same knowledge as the original table.

Moreover, these lists provide a way of explaining

the DSS proposals, as we shall see now. The

decision-maker will not only know what to do at
each stage of the problem, but also what the im-

plicit rules of the protocol modelled and evaluated

by the system are. This certainly makes the final

DSS more usable, adding important details of

validation, affinity and relevance of the attributes

of the original table. Hence, optimising the storage

of the decision table and finding explanations are

to some extent the same problem.
Let us take an item of the KBM2L list.

Remember each item comprises adjacent cases of

the table with the same policy. The adjacency was

relative to the order imposed by the offset, which

was associated with a scheme. Now we wonder

whether there is also a similarity among the attri-

butes of those adjacent cases. Thus, we look at the

other part of the item: their indices. Since the offset
does not explicitly show the indices, it is preferable

to use indices notation-based KBM2L.

Let us define two clearly different parts of the

indices an item comprises. The first part is the fixed

part of the indices: the common components of all

the item cases. The fact that values of the respec-

tive attributes of these components are the same

somehow explains why the policy is also the same.
Therefore, the set of attributes of the fixed part can

be interpreted as the policy explanation.

The second part, which is complementary to the

first part, is the variable part: the cases do not

share the same values and, therefore, the attributes

are not relevant in deciding the best action to be

taken.

Fortunately, we shall not have to look at the
whole set of indices an item includes to find the
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fixed and variable parts. It is enough to look at the
indices Iinf and Isup associated with its extreme

cases. The fixed part is the result of the logical-

AND: Iinf ^ Isup.

Example 2 (continued). As an illustration of the

parts of an item, let us take the final KBM2L with

3 items (Table 4). For item < 1;Bj, Iinf ¼ ðc0 ¼
0; c2 ¼ 0; c1 ¼ 0Þ and Isup ¼ ðc0 ¼ 0;c2 ¼ 0;c1 ¼ 1Þ.
The item contains 2 cases. Then, ðc0;c2Þ is the fixed
part and c1 the variable part of the indices.

ðc0 ¼ 0;c2 ¼ 0Þ explains to some extent the fact

that the policy is B. For item < 4;Aj, Iinf ¼
ðc0 ¼ 0;c2 ¼ 1;c1 ¼ 0Þ and Isup ¼ ðc0 ¼ 1;c2 ¼ 0;
c1 ¼ 0Þ. The item includes 3 cases. The fixed part

is empty; the variable part is the whole index.

For item < 7;Cj, Iinf ¼ ðc0 ¼ 1;c2 ¼ 0; c1 ¼ 1Þ and
Isup ¼ ðc0 ¼ 1;c2 ¼ 1;c1 ¼ 1Þ. The item contains 3

cases and the fixed part is c0.

It is worth pointing out some possible cases.

The whole index of an item that is a single case is

fixed ðIinf ¼ IsupÞ, whereas its variable part is

empty. On the contrary, as in the above example,

an item may have an empty fixed part. This is
likely if the item gathers all or most of the possible

cases of a table. In this case, none of the attributes

are important in the policy. The description of the

item is more complicated for explanation purposes

and requires the analysis of the domain of the

attributes of greater weight. The rationale behind

these situations is that the more cases an item in-

cludes, the more difficult it is to find common
indices. The extreme situation of having only one

item (same policy for every case) would lead to an

empty fixed part: every context leads to the same

policy, so, we cannot explain such a diversity of

cases covering all the attribute domains with a few

fixed attributes.
3. Optimising the search for good bases

A KBM2L of a decision table is associated with

a certain storage space and reorganisation of the

information. We would like to have the same

information stored but in a minimum space and

with maximum organisation. Since the problem
semantics must be preserved, i.e. the set of attri-
butes should be unchanged, we are not looking for

any possible way of storing the information of the

table. Our search will be constrained to the pos-

sible permutations of attributes. In tables of d
attributes, we must consider d! possible solutions

(the domains order being fixed). Because the

attribute domains are discrete, the domain order

might also be permuted, increasing the search
space of solutions to d!

Qd	1

i¼0 Di!. We have not yet

implemented this second possibility, and we have

d! solutions or bases.
Therefore, the problem of finding the KBM2L

list with the least number of items is one of com-

binatorial optimisation. The general scheme of

searching for a good base will try to improve the

current base generating another base according to
some strategy. If this new list is more optimal

than the old one (i.e. if it requires a shorter list),

it is kept and the process iterates to improve it

again.

There is still a problem: the improvement of the

solutions cannot be verified in polynomial time if

the complete lists are compared––an exponential

problem at each step that will be tackled in Section
4.

3.1. General ideas

In problems where the set of attributes is very

large, it may be necessary to initially set the weight

or position of some attributes in the base and to

proceed by learning the subproblem. This is
equivalent to fixing the role of an attribute, like

relevant (high weight) or irrelevant (low weight).

This is a reasonable strategy to start with.

The probability of obtaining the optimal base in

a random test is 1
d! ¼ pd, without any information

about attribute positions. If we know prior to the

study that there are v relevant attributes in all

items, the above probability is v!
d! ¼ pd	v. Note that

pd	v > pd if v > 0, i.e. if we have some knowledge

about the domain.

Let us suppose we are going to move from base

B to base B0. At that moment, we know the current

best list length and the length related to B. We also

know a lower bound of the list length with respect

to base B0 (see a method in Section 4). If we want a
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change of base to reduce the size of the KBM2L

list, we should extract the new base B0 from a

subset that contains the optimal base and bases

that are better than B.
One clearly has to reorganise the table into

bases that allow the items to be joined and place

equal items adjacently. Fortunately, the process of

base generation learns how to generate better lists,

with a greater probability of union of contexts.
With this information, we will impose constraints

on the order we generate to prevent item frag-

mentation and promote unions.

Example 3. Let us take the following KBM2L.

The initial base is B ¼ ½0; 1; 2; 3; 4� with binary

attributes. The representation space has 32 cases.

Suppose none of the attributes has been set as
relevant/irrelevant. The initial list is in offset

notation:

< 3; xj < 7; yj < 9; xj < 31; yj
and in indices notation:

< ð0; 0; 0; 1; 1Þ; xj < ð0; 0; 1; 1; 1Þ; yj;

< ð0; 1; 0; 0; 1Þ; xj < ð1; 1; 1; 1; 1Þ; yj:

Note the two separate items with policy x at offsets
3 and 9. The first item has indices c0 ¼ c1 ¼ c2 ¼ 0,

which are the fixed part. However, the item at
offset 9 has c0 ¼ 0, c1 ¼ 1, c2 ¼ 0, c3 ¼ 0 as the

fixed part. As a consequence: (1) attribute 4 is al-

ways irrelevant, covering its whole domain and

will remain at the same position for the next base;

(2) attribute 1 is fixed in both items, though it is 0

in the first one and 1 in the second one, covering its

whole domain (irrelevant as a whole). Thus, a

movement of attribute 1 to a position of lesser
weight is suggested. If we try base B0 ¼ ½0;2;1;3;4�,
the new KBM2L list is

< 5; xj < 31; yj
in offset notation. In indices notation:

< ð0; 0; 1; 0; 1Þ; xj < ð1; 1; 1; 1; 1Þ; yj:
It results in the union of both items. Moreover, if

various grains of equal policy give rise to one

grain, others may join as well (items with policy y
in the example).
Now there are only two items. The whole list
would be, in offset notation:

< 0; xj < 1; xj < 2; xj < 3; xj < 4; xj;

< 5; xj < 6; yj < 7; yj < 8; yj � � � < 30; yj < 31; yj:
And in indices notation:

< ð0; 0; 0; 0; 0Þ; xj � � � < ð0; 0; 1; 0; 1Þ; xj;

< ð0; 0; 1; 1; 0Þ; yj � � � < ð1; 1; 1; 1; 1Þ; yj:
Note the vectors Iinf and Isup. The fixed part for the
first item consists of the first two indices ðc0; c2Þ
and the variable part is ðc1; c3; c4Þ. For the second

item, its fixed part is empty and its variable part is

ðc0; c1; c2; c3; c4Þ.

As another general rule for guiding the search

for the optimal base, we have just given the idea of

transposing indices that cover their whole domains
to positions of lesser weights. The respective

attribute is irrelevant for the fragmented policy

and the items can be joined.

We generate more information relative to the

search space below. We suggest two techniques for

minimising the number of items. The first one uses

a variable neighbourhood (VN) methodology

(Hansen and Mladenovi�c, 2001) and the second
one is a genetic algorithm (GA), both adapted to

our specific problem.

At each iteration the algorithms maintain only

one KBM2L and a set of bases. The optimisation

process works on the candidate base using the

fitness of each base (in the GA) or the proximity

between two bases (in the VN approach). Obvi-

ously, we do not store either a population of lists
or the neighbour lists with all cases on all the

bases.
3.2. Variable neighbourhood algorithm

In a first stage, we tried a combination of local

and global search. We understood ‘‘local’’ to mean

changing a few elements from one base to the
following base. Thus, if the base was [0,1,2,3] and

we changed only two attributes, we moved

through its 2-neighbourhood: {[1,0,2,3], [0,2,1,3],

[0,1,3,2], [2,1,0,3], [0,3,2,1], [3,1,2,0]}. This



Fig. 1. KBM2L spectra.
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amounts to moving towards all the elements of the
Hamming distance H equal to 2.

In general, a 2-neighbourhood contains

dðd 	 1Þ=2 neighbours, whereas there are ðd 	 1Þ!
neighbours at a distance H equal to d. For the

above base (d ¼ 4), they are: {[1,2,3,0], [2,3,0,1],

[3,0,1,2], [3,2,1,0], [2,0,3,1], [3,2,1,0]}.

The strategy was to mix a local search by enu-

meration of bases in 2-neighbourhoods (all the
bases) with some extra random jumps into

d-neighbourhoods (far from the provisional solu-

tion). We computed statistics (minimum, maxi-

mum and average item size per policy, etc.) that

described the items of the KBM2L list. The use of

just the local search was often enough to get good

results.

We later discovered that our idea of ‘‘locality’’
or ‘‘neighbourhood’’ should be changed. A key

observation was that the effect of changing two

attributes is completely different depending on

where they are located, although the Hamming

distance is 2 anyway.

In order to study this remark in further detail,

let us create a graphical representation of the

KBM2L list that shows how the cases are grouped
when the base is changed. This representation

shows a spectrum of the storage list: the sets of

cases (X -axis) with the same optimal decision

policy (same colour). Fig. 1 shows a table in a

representation space with 28 cases (eight binary

attributes). Note how the change of base has a

bearing on the union/fragmentation of items. The

lists associated with each spectrum have the same
information (256 cases), but the optimal list (the

last one) requires less memory space to store these

cases, see Table 5.

Let B and B0 be the initial and the new base,

respectively. Let B! B0 denote a generic change of

base. Then, we suggest a simple classification of

the base changes:

1. Changes among few attributes, all of them

with high weight in both bases. The effect on

the initial list is its transformation by means

of global movements of big blocks of informa-

tion.

2. Changes among few attributes, all of them with

low weight in both bases. The effect is a trans-
formation by means of local movements of tiny

blocks of information.

3. Changes among few attributes, all of them with
medium weight in both bases. The initial list is

transformed by means of global movements of

small blocks.

4. Overlap of cases 1, 2 and 3.



Table 5

Specific information about Fig. 1

Initial base (lower,

upper)

64 Items

[0,1,2,3,4,5,6,7] < ((index),

policy)j
Offsets Cases

<(0,0,0,0,1,0,0,1), 1j (0, 9) 10

<(0,0,0,0,1,0,1,1), 2j (10, 11) 2

<(0,0,0,0,1,1,0,1), 1j (12, 130) 2

<(0,0,0,1,0,1,0,1), 2j (14, 21) 8

<(0,0,0,1,1,0,0,1), 3j (22, 25) 4

<(0,0,0,1,1,0,1,1), 4j (26, 27) 2

. . . . . . . . .

<(1,1,1,1,1,1,1,1), 4j (254, 255) 2

Optimal base (lower,

upper)

4 Items

[3,4,6,5,1,2,0,7] < ((index),

policy)j
Offsets Cases

<(0,1,0,1,1,1,1,1), 1j (0, 95) 96

<(1,0,1,0,1,1,1,1), 2j (96, 175) 80

<(1,1,0,1,1,1,1,1), 3j (176, 223) 48

<(1,1,1,1,1,1,1,1), 4j (224, 255) 32

Fig. 2. Classification of base changes.
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5. General changes of base, where many attributes

change their weights of any magnitude, trans-

form the list chaotically.

In addition, any change of base has a set of

cases that do not move with the transformation,

i.e. fixed points. For example, for binary attri-

butes, the cases 000� � �0 and 111� � �1 have the same

offset in all possible bases, though there are many

more cases. See more comments on this in Section

4.

Fig. 2 summarises the types of base changes.
Obviously, there is no direct relationship between

the base change types and the KBM2L length.

Otherwise, we would be able to choose the best

change of base and obtain an optimal KBM2L

easily, and this is not possible.

This important qualitative description of the

different base changes allows us to propose a

number of heuristics to guide the search based on
an alternative idea of neighbourhood, that is more

accurate and closer to our optimisation problem.

We introduce a new proximity measure between

bases that takes into account the effect of the base

change on the new KBM2L list. For a type-1
change of base, the new KBM2L list will be similar

to the old list, and the measure value should be

low. For a type-5 change, the new list will be quite

different, and the measure value should be high.

Let G be a function defined as follows. For all

bases B, B0 such that B 6¼ B0

GðB;B0Þ ¼ rleft þ
Xd	1

i¼0

ri

 
þ HðB;B0Þ 	 1

!

and GðB;BÞ ¼ 0, where HðB;B0Þ is the Hamming

distance between B and B0, ri is the number of
attributes between the initial position and the final

position of each permuted attribute i, and rleft is
the number of adjacent non-permuted attributes to

the left of the permuted attribute with the highest

weight.

G is subordinated to the Hamming distance. G
counts, via H , how many attributes have been

permuted. But H is only a distance between codes,
and the role a base plays in the problem is not

revealed. Hence, G counts, via ri�s, how far along

the transformation the attributes that have been

permuted are, taking into account the change in

the weight of the attributes. If an attribute does

not jump or jumps to an adjacent position, then it

does not contribute to ri ðri ¼ 0Þ. This is a way of

roughly identifying the changes of base typified
above.
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Moreover, in order to enhance the classifica-
tion, G captures the idea that changes among a few

attributes are different depending on where the

attributes are. For example, an exchange of the

first and second attributes (type-1 change) will lead

to few changes in the KBM2L. However, an ex-

change of the last and penultimate attributes (type-

2 change) will lead to many changes in the

KBM2L. The term rleft in G captures this idea: the
latter change would yield a longer G-value than

the former.

Table 6 illustrates some examples of function G.
The first and third cases have short G-values be-

cause the weights of the attributes have changed a

little bit. They would be type-3 changes of base.

The second and fourth examples have longer G-
values because the weights of the changed attri-
butes are rather different. They are type-5 changes

of base.

Although desirable, it is not easy to define a

distance in the whole search space that captures the

effect of the attribute movements. In fact, G is not

a distance since the triangular inequality,

GðB;B0Þ6GðB;B00Þ þ GðB00;B0Þ8B;B0;B00, does not

hold.

Counterexample. If B is [0,1,2,3,4,5], B0 is

[0,1,2,3,5,4] and B00 is [1,0,2,3,4,5], then GðB;B00Þ ¼
1;GðB0;B00Þ ¼ 3, but GðB;B0Þ ¼ 4þ 2	 1 ¼ 5.

Nevertheless, we use G constrained to a subset

of bases as follows (even though it is not a dis-

tance). Let NH2ðB0Þ be the set of bases B such that
Table 6

Examples of H and G

Bases H

_ _ðq_ _XY _ _ _ _ _ 2

_ _ _ _ _YX _ _ _ _ _

_ _ _ _ _ðq _ _X _ _ _ðr _ _ Y _ _ _ _ _ 2

_ _ _ _ _ Y _ _ _ðr _ _X _ _ _ _ _

_ _ðq _ _XYZ _ _ _ _ _ 3

_ _ _ _ _ZXY _ _ _ _ _

_ðq _ _X _ _ _ðr _ _ Y _ _ _ðs _ _Z _ _ _ 3

_ _ _ _ Z _ _ _ðr _ _X _ _ _ðs _ _ Y _ _ _

_ _ _ _ j _ _ _ _ _ _ _ _ðt _ _ _ _ _ j _ _ _
HðB;B0Þ ¼ 2 for a given base B0. For all
B 2 NH2ðB0Þ, we denote G as

GH2ðB0;BÞ ¼ rleft þ
Xd	1

i¼0

ri þ 1

and GH2ðB0;B0Þ ¼ 0.

Let us examine the differences between the

Hamming distance and function G (and GH2) in
more depth. Given a base B0, its neighbourhood

NH2ðB0Þ is easy to compute. For B0 ¼ ½0; 1; 2; 3; 4�,
NH2ðB0Þ includes the following 10 bases:

B0 ¼ ½0; 1; 2; 3; 4�;
B1 ¼ ½1; 0; 2; 3; 4� B6 ¼ ½0; 3; 2; 1; 4�;
B2 ¼ ½2; 1; 0; 3; 4� B7 ¼ ½0; 4; 2; 3; 1�;
B3 ¼ ½3; 1; 2; 0; 4� B8 ¼ ½0; 1; 3; 2; 4�;
B4 ¼ ½4; 1; 2; 3; 0� B9 ¼ ½0; 1; 4; 3; 2�;
B5 ¼ ½0; 2; 1; 3; 4� B10 ¼ ½0; 1; 2; 4; 3�:

In Table 7, we compute the G-values for each

pair of these 10 bases. The first row corresponds

with GH2ðB0;BÞ; 8B 2 NH2ðB0Þ.
Note the different values GH2 takes along the

first row, from 0 to 7. For 5 attributes, GH2 is in the

discrete range {0,1,2,3,4,5,6,7}, whereas the H
distance is in {0,2,3,4,5}. Fig. 3 depicts this idea

graphically.
Note that G-values between bases (the other

rows) are also rather different, likewise their H
distances, not shown in that table. For example,

the set of bases in NH2ðB0Þ such that GH2ðB0;BjÞ63

is fB0;B1;B2;B5;B8g. Their quantities GðBi;BjÞ can
G

qþ 1

qþ 2r þ 1

qþ 3

qþ r þ sþ t þ 2



Table 7

G-values for every pair in NH2ðB0Þ (d ¼ 5)

G B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

½01234� ¼ B0 0 1 2 6 7 2 7 6 3 5 4

½10234� ¼ B1 1 0 3 5 7 3 5 7 3 5 3

½21034� ¼ B2 2 3 0 5 7 3 7 9 5 7 5

½31204� ¼ B3 6 5 5 0 7 7 5 11 5 9 7

½41230� ¼ B4 7 7 7 7 0 9 11 8 9 7 7

½02134� ¼ B5 2 3 3 7 9 0 4 6 4 6 4

½03214� ¼ B6 7 5 7 5 11 4 0 6 4 8 6

½04231� ¼ B7 6 7 9 11 8 6 6 0 8 6 6

½01324� ¼ B8 3 3 5 5 9 4 4 8 0 5 5

½01432� ¼ B9 5 5 7 9 7 6 8 6 5 0 5

½01243� ¼ B10 4 3 5 7 7 4 6 6 5 5 0
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be greater than 3, see Fig. 4. The Hamming dis-
tance between them is always 3 for every pair

ðBi;BjÞ, i; j 6¼ 0 except for ðB1;B8Þ, which is 4. This

is an example of G-proximity within NH2ðB0Þ.
On the contrary, the set of bases in NH2ðB0Þ

such that 5 < GH2ðB0;BjÞ6 7, i.e. with high values

for GH2, is fB3;B4;B6;B7g. Values GðBi;BjÞ are

also high, see Fig. 5, as an example of non-G-
Fig. 3. Values of GH2ðB0;BjÞ, j ¼ 1; . . . ; 10.

Fig. 4. G-values for bases s.t. GH2ðB0;BjÞ6 3.
proximity within NH2ðB0Þ. The Hamming distance
between them is always 3 for every pair, except for

ðB4;B6Þ and ðB3;B7Þ, which is 4. Note again that H
discriminates very little compared to G.

Now, our initial good results by locally

searching through neighbourhoods of Hamming

distance equal to 2 are explained: the search was in

fact through variable GH2-neighbourhoods.

The induced measure GH2 in NH2ðB0Þ is, like G,
very rich, since it distinguishes between the base

changes. This new proximity measure is the guide

to control the search. Assuming we are at a base

B0, we try a movement to a base B in NH2ðB0Þ. If B0

were judged bad, the next movement would be

towards a base farther away on the GH2 scale (e.g.

B0 ! B4 in Table 7). When it is suspected that the

current base B0 is near the optimal base, or at least
its KBM2L size is small, the movements will be

towards close bases with respect to GH2 (e.g.

B0 ! B1). The new base B would be the centre of

the neighbourhood NH2ðBÞ, where the next search
Fig. 5. G-values for bases such that 5 < GH2ðB0;BjÞ6 7.



Table 8

G-values for every pair in NH2ðB0Þ (d ¼ 4)

G B0 B1 B2 B3 B4 B5 B6

½VUXY � ¼ B0 0 1 3 5 2 4 3

½UVXY � ¼ B1 1 0 4 4 3 5 3

½XUVY � ¼ B2 3 4 0 5 3 7 5

½YUXV � ¼ B3 5 4 5 0 7 5 5

½VXUY � ¼ B4 2 3 3 7 0 4 4

½VYXU � ¼ B5 4 5 7 5 4 0 4

½VUYX � ¼ B6 3 3 5 5 4 4 0
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would start. Fortunately, this strategy covers the

whole search space, still following simple permu-

tations.
This scheme bears a resemblance to simulated

annealing (Kirkpatrick et al., 1983), which could

fit our framework.

Example 4. Let us consider the following example

with four binary attributes fX ; Y ;U ; V g and a set

of 4 possible policies {0,1,2,3}. Let us take

B0 ¼ ½V ;U ;X ; Y �. The 6 bases in NH2ðB0Þ are
B1 ¼ ½U ; V ;X ; Y � B2 ¼ ½X ;U ; V ; Y �;
B3 ¼ ½Y ;U ;X ; V � B4 ¼ ½V ;X ;U ; Y �;
B5 ¼ ½V ; Y ;X ;U � B6 ¼ ½V ;U ; Y ;X �:

When moving from B0 to Bi, the types of base

changes are: 1 to B1, 2 to B6, 3 to B4, 5 to B3, an

overlap of 1 and 3 to B2, and an overlap of 2 and 3

to B5.

The next table shows the policy vector of all 16

cases according to all the different bases in

NH2ðB0Þ. We will see that the optimal bases are not

within NH2ðB0Þ.

Base B0 = [ V,U, X, Y] 16 items
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Base B1 = [ U, V,X, Y] 16 items
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Base B2 = [ X, U, V,Y] 16 items
0 1 0 1 0 1 0 1 2 3 2 3 2 3 2 3

Base B3 = [ Y,U, X, V] 8 items
0 0 2 2 0 0 2 2 1 1 3 3 1 1 3 3

Base B4 = [ V,X, U, Y] 16 items
0 1 0 1 2 3 2 3 0 1 0 1 2 3 2 3

Base B5 = [ V,Y,X, U] 8 items
0 0 2 2 1 1 3 3 0 0 2 2 1 1 3 3

Base B6 = [ V,U, Y,X ] 16 items
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
WithB1,B2,B4 andB6, the number of items in the

KBM2L is 16. Therefore, B0 should be improved by

moving towards a base B such that GH2ðB0;BÞ is
large (maybe a type-5 base change). G-values for

this set of bases are shown in Table 8. From this

table, we choose B3 as B since GH2 is maximum.

Now, with B3, the KBM2L has 8 items and we

try another movement. Table 8 does not need to be

computed again because although B3 now becomes

B0, the G-values for NH2ðB0 ¼ ½Y ;U ;X ; V �Þ can be

obtained by relabelling the attributes. The 6 bases
in NH2ðB0Þ are

B1 ¼ ½U ; Y ;X ; V � B2 ¼ ½X ;U ; Y ; V �;

B3 ¼ ½V ;U ;X ; Y � B4 ¼ ½Y ;X ;U ; V �;

B5 ¼ ½Y ; V ;X ;U � B6 ¼ ½Y ;U ; V ;X �:

The next movement should be towards a base B
s.t. GH2ðB0;BÞ is small, like B ¼ B4 or B ¼ B1.

After exploring B1 and B4, with GH2ðB0;B1Þ ¼ 1

and GH2ðB0;B4Þ ¼ 2, B4 is better. This is an opti-

mal base, giving rise to 4 items, as shown in the

next table.

Base B0 = [ Y,U, X, V] 8 items
0 0 2 2 0 0 2 2 1 1 3 3 1 1 3 3

Base B1 = [ U, Y,X, V] 8 items
0 0 2 2 1 1 3 3 0 0 2 2 1 1 3 3

Base B2 = [ X, U, Y,V] 8 items
0 0 1 1 0 0 1 1 2 2 3 3 2 2 3 3

Base B3 = [ V,U, X, Y] 8 items
0 0 2 2 0 0 2 2 1 1 3 3 1 1 3 3

Base B4 = [ Y,X, U, V] 4 items
0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3

Base B5 = [ Y,V,X, U] 8 items
0

Base B6 = [ Y,U, V,X ] 16 items
0 2 0 2 0 2 0 2 1 3 1 3 1 3 1 3
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3.3. Genetic algorithm

The application of genetic algorithms to com-

binatorial optimisation problems is well docu-

mented in several application domains (Mitchell,

1998). In these algorithms, the search space of the

problems is represented as a collection of individ-

uals. These individuals codify the solutions with
character strings (or arrays of numbers, or matri-

ces,. . .), which are often referred to as genes. In

our problem, an individual will be a base, i.e. an

order for the attributes (genes).

The purpose of using a GA is to find the indi-

vidual in the search space with the best genetic

material. The quality of an individual is measured

via an evaluation function or fitness, related in our
case to the storage space required by the KBM2L

associated with each base. Since computing the

KBM2L size for each individual is extremely

costly, the fitness will be a lower bound for this size

(see ‘‘Test of a new base’’ in Section 4). At each

iteration, we will only need to store bases (indi-

viduals) together with their fitness, but not the

corresponding full lists.
Once an initial population has been chosen, the

quality of the individuals is determined and some

of them are selected to produce new individuals,

which will be added to the population. For all

newly created individuals, there exists a probabil-

ity (near to zero) of mutation, changing their

genes. After that, some individuals are removed

from the population. One iteration of this process
is called a generation.

The operators that define the behaviour of

the GA are: selection, crossover and mutation.

All of them must be selected to improve

the average quality of the population, favour-

ing the maintenance of good genetic material

(i.e. good orders for the attributes of the

base).
Selection criterion. The selection criterion used

to mate and remove individuals tries to avoid

strong selective pressure, maintaining population

diversity as a way of permitting movement all over

the search space.

The selection is carried out according to the

following probability (a non-linear function) of

being selected
probðrankÞ ¼ qð1	 qÞrank	1
;

where rank identifies each individual, i.e. it is the
order of the individual in the population according

to its quality (see the next paragraph) and q is a

fixed number in (0,1).

Selection for mating needs a previous arrange-

ment of the individuals from best to worst. So, for

the best individual rank ¼ 1. This way of selection

prevents the best individuals from monopolising

the evolution process, while giving them prefer-
ence.

When this function is used to discard individ-

uals from the population, the opposite arrange-

ment, from worst to best, is required.

Crossover. We have implemented two opera-

tors. The one-point crossover is a general operator

such that a cut point is selected to divide the

individuals to be mated into two parts: f1 and f2
for father and m1 and m2 for mother. Offsprings

are formed by exchanging these parts: f1 	 m2 and

m1 	 f2. This operator needs a repair mechanism,

because some attributes may be repeated in

offspring and this is not possible in a suitable

base.

The voting crossover is better suited for our

specific problem. This operator is based on the role
of each attribute in the individuals. The main idea

is to generate a ranking of attributes. Given two

bases Bf (father) and Bm (mother), the score pro-

posed by both bases for each attribute ai at the

new base is

j
Lf

þ k
Lm

¼ j � Lm þ k � Lf
Lf � Lm

; ð2Þ

where j is the position of ai in Bf and k in Bm.
Values Lf and Lm are the KBM2L lengths (or at
least their switch estimations, see Section 4) asso-

ciated with each base (i.e. the fitness). The smaller

the score, the further to the left the attribute is in

the base. Let us illustrate the details with an

example.

Example 5. Let Bf be [2,1,0,3,5,4] with Lf ¼ 30

and Bm be [3,2,1,4,5,0] with Lm ¼ 45. For cross-
over, bases vote to propose a new base Bc. The
attributes have the following scores arranged by

means of (2):
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a0 :
2 � 45þ 5 � 30

45 � 30 ¼ 0:177;

a1 :
1 � 45þ 2 � 30

45 � 30 ¼ 0:077;

a2 :
0 � 45þ 1 � 30

45 � 30 ¼ 0:022;

a3 :
3 � 45þ 0 � 30

45 � 30 ¼ 0:100;

a4 :
5 � 45þ 3 � 30

45 � 30 ¼ 0:233;

a5 :
4 � 45þ 4 � 30

45 � 30 ¼ 0:222:

The minimum is the score of a2, followed by a1 . . .,
and, finally, the maximum is a4. So, the new base is
Bc ¼ ½2; 1; 3; 0; 5; 4�. Ties, if any, are resolved at

random.

This operator only produces one new child from

each mating of father and mother.

Mutation. The mutation operator selects at

random two attributes that change their positions

in the base.
The GA stops if after a fixed (big) number of

generations, the fitness does not improve.
3.4. Experiments

In this section we carry out some experiments to

test the algorithms presented above. Our interest

will be the CPU time and the solution trace (list
size at each iteration) for each KBM2L using: (1)

the VN algorithm with the H2 metric (VNA-H2);

(2) the VN algorithm with the GH2 proximity

measure (VNA-GH2); (3) the GA with the voting

crossover; and (4) a hybrid algorithm based on the

VN algorithm with GH2 and the GA (GA+VNA-

GH2). This fourth algorithm runs a GA until a

good solution is judged, launching then a local
search, much in the VNA-GH2 spirit.

We use a 1-GHz PentiumIII PC, with 512 MB,

Java 2 and Windows XP. We consider 10, 90 and

300 attributes A, and domains with cardinal D
equal to 2, 4 and 8, giving rise to nine different
KBM2Ls, k1; k2; . . . ; k9, with a number of cases as
follows:

The list content is generated at random from

the offset space. The number of known cases for

each table is

The rest of the table is unknown. For all the

lists we knew the optimal base. The number of

items for each optimal table was 41. We then

changed the base at random and tried to find the

optimal. After this, the number of items for each

table in the initial iteration is

Next we show the results. Fig. 6 shows a com-

parative study of the four algorithms in terms of

the (log) CPU time used, measured in milliseconds.

As far as the CPU time is concerned, in general,
our experiments show that the GA behaves better

than the VN algorithms whenever there are a lot of

attributes. All the lists except k1, k4 and k9 sup-

port this finding, i.e. the VNA-GH2 is better for k2,
k3, k5, k6 and the GA is better for k7, k8. The
rationale behind this may be as follows. If the table

dimension increases, the number of members

within the H2-neighbourhood where the VN
search is performed increases (it has dðd 	 1Þ=2

k1 k2 k3
A ¼ 10 210 410 810

k4 k5 k6
A ¼ 90 290 490 890

k7 k8 k9
A ¼ 300 2300 4300 8300

A ¼ 10 A ¼ 90 A ¼ 300

D ¼ 2 355 243 259

D ¼ 4 267 258 270

D ¼ 8 222 258 246

A ¼ 10 A ¼ 90 A ¼ 300

D ¼ 2 574 486 518

D ¼ 4 534 516 540

D ¼ 8 444 516 492
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Fig. 6. Comparative results: (1) VNA-H2, (2) VNA-GH2, (3)

GA and (4) GA+VNA-GH2.
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members for d dimensions). However, the GA
population size is often chosen using heuristics

with a linear behaviour rather than quadratic,

which is less expensive. Thus, based on empirical

evidence, Alander (1992) suggests a size between d
and 2d. Indeed, we have used d.

Fig. 7 shows the evolution of the objective

function (minimum list size) for the nine lists as the

algorithms progress. We only show the results up
to the first 10 iterations, for comparison purposes.

Note that for the genetic approaches, the fitness is

measured in switches (left-hand-side of the vertical

line), rather than in items, as explained above. The

right-hand-side of the line shows the true list sizes,

in items.

All the evolution patterns are exponentially

decreasing as a consequence of the fast informa-
tion reorganisation when the relevant (irrelevant)

attributes put on (lose) weight. The k1 example

shows a slow convergence under VN approaches, a

little bit faster under the VNA-GH2. This example

might be the typical case that shows the heuristic

weakness.

The VNA-GH2 globally stands out because of its

refined G measure for comparing bases. We must
take into account that the iterations cost differ-

ently for the GA and the VNA. It is more costly

for the former: it initially consumes many re-

sources because of working with a whole popula-

tion, which includes bad bases (see the high figures
in the Y -axis for the genetic methods). Also, it does
not compute the true list size but a lower bound.

Perhaps the GA would be even better if the oper-

ators, specially the crossover, were improved to

reveal the features of our problem.

We think the hybrid strategy is not worth it. It

firstly reproduces the GA pattern and then, a slow

convergence when the VNA is applied.
4. Copying information from one base to another

The last section dealt with the combinatory of

the search for the optimal base. This section takes

into account the combinatory of storage.

The size of real decision tables is a com-

plex problem for coordinate transformation. The
change of base is not a trivial problem. All

the elements of the table must be copied into the

new base according to the new order. The com-

plexity of this copying is
Qd	1

i¼0 Di. Taking advan-

tage of data sparseness in the KBM2L structure

due to storage as items, we propose a number of

heuristics to implement an efficient copy proce-

dure.
As explained above (see Section 2.2), the

method for constructing the KBM2L list consists

of reading the table inputs with the original initial

order ½0; 1; . . . ; d 	 1� and writing these inputs into

a structure without information: < w0D0 	 1;	1j
(in offset notation).

In general, we will face decision tables with

unknown data: (1) during the process of con-
structing the KBM2L while the different partial

tables are added to the list (see, e.g., Example 2);

(2) if the table is very large and it is not possible to

solve the whole decision-making problem by

solving all the subproblems (instantiating some

attributes).

When we change the base, the information,

other than )1, is then copied to the new structure,
case by case, in a standard way. Therefore, the

information copy procedure between KBM2L

structures in different bases may require up to

w0D0 elements or cases to be copied. However, we

provide some heuristics for discarding many bases,

thereby decreasing the search space, avoiding

copying all the information, and speeding up



Fig. 7. Evolution of the four algorithms.
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improvement checking with respect to the old
base.

Initialisation. When trying to obtain computa-

tional savings, we find that the contents are copied

only if they have information, i.e. it is not neces-

sary to copy the inputs marked as )1 (unknown).

Thus, the new information would be initialised

with )1. Accordingly, in cases without unknown

information, some contents do not have to be
copied. For example, if the policy has three out-

comes, the new list can be initialised with the first

outcome. Thus, this outcome can be ignored in the

copy, and only the other two outcomes have to be

copied.

Test of a new base. It would be desirable if we

could only take a sample of the copy to decide

whether the base can be rejected. This means that
we would not have to look at the whole copy,

which is not an easy task for such massive tables.

Remember that extreme indices Iinf and Isup
determine the length and position of the items.

They will be important in this improvement test.

Specifically, our proposal is to copy only every

Isup and count the policy Switches in the stored

sequence of items. We scan the KBM2L and re-
cord one Switch if we see � � � < p;Aj < r;
	1j < q;Bj � � � or � � � < p;Aj < q;Bj � � �, where pol-

icy A is different from B. We will reject the bases
Table 9

KBM2L fast copy procedure

[ABCD] Initial Offset [ABCD] Policy

0000 0 d0 *

0001 1 d0
0010 2 d0
0011 3 d0

0100 4 d0
0101 5 d1
0110 6 d1
0111 7 d2

1000 8 d0
1001 9 d0
1010 10 d0
1011 11 d0

1100 12 d2 *

1101 13 d2
1110 14 d2
1111 15 d2
with more Switches than those of the hitherto
minimum KBM2L. Note that the complexity of

performing this base test depends on the size of the

list, which is much smaller than the table size. The

experimental results show that this test is very

efficient: low computational cost, high rate of base

rejection and the optimal base is never rejected.

Fast copy. If the bases have attributes in com-

mon at positions of less weight, the items have to
be copied out following the storage of the source

KBM2L list. This base change enables develop-

ment of an ultra high-speed copy procedure. The

initialisation of the target list is a clone of the

source list, instead of the empty list, and the )1
items have to be copied. Copying stops whenever

the new list fragments the grains or contexts and

the new KBM2L list is bigger. The procedure that
follows fits for base changes of type-1 and 3, and

when there are not too many unknown cases.

Example 6. Table 9 shows a base change

½A;B;C;D� ! ½B;A;C;D� where the attributes are

binary. Note that this is a type-1 base change. The

base change causes a grid within the table, with a

resolution of jAj � jBj ¼ 4 (see the horizontal
lines).

Once we have cloned the source list, we begin

copying. Remember that it is necessary to follow
[BACD] New Offset [ABCD] Policy

0000 0 d0
0001 1 d0
0010 2 d0
0011 3 d0

0100 8 d0
0101 9 d0
0110 10 d0
0111 11 d0

1000 4 d0
1001 5 d1
1010 6 d1
1011 7 d2

1100 12 d2
1101 13 d2
1110 14 d2
1111 15 d2
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the steps: (1) read a case; (2) permute the attribute
values according to the new base or compute the

new offset; (3) compare its policy to the one it is

assigned (after cloning); (4) copy if the two are

different; and (5) apply the rules of item manage-

ment to organise the table as a KBM2L.

The idea here is to only copy the knowledge

that has been moved with respect to the source

table and not to touch the cases with fixed offset. If
the attribute values involved in the permutation (A
and B) are the same sequence of values before and

after the permutation, then the offset value does

not change given that all the attributes have the

same domain cardinalities. In our example:

AB ¼ 00 and AB ¼ 11. The � symbol in the table

means that we are at the beginning of one fixed

segment of the grid. So, we have avoided copying
(and the other tasks numbered above) 8 cases so

far.

Moreover, note that the block of cases from

offset 4 to 7 in the source table moves to the po-

sition of the block of cases from offset 8 to 11 in

the target table, and vice versa. Then, when a

block is detected, a copy en bloc is launched. It

means that the four policies of a block are directly
copied, in the original order, avoiding the task of

changing the base (step (2) above). Rows 6, 7, 8,

10, 11, 12 in the second table are the only cases we

have to update. So, the standard copy copies 16

cases, while the fast copy only needs to copy 6

cases. The savings in a big schema are very size-

able.

Partial copy. A partial information copy pro-

cedure follows. It implements a learning procedure

between lists. First, the number of cases associated

with each policy is counted in the source list.

Second, the target list is initialised with )2 if the

original list has unknown cases. Note that here )1
is information to be copied, as if it were another

policy outcome. Otherwise, the list is initialised in
a standard way with )1.

Third, a sample from the whole list is copied to

the new base, thereby avoiding copying so many

cases with respect to the new base. Fourth, an

inference of the whole new list is carried out as

follows. The gaps between two equal policies (like

	1;	1 or A;A) are filled in with the policy in
question. This is still the same even if there are
labels )2 between them (i.e. . . .A;	2;A; . . .). The
gaps between two different policies (like, e.g., A;B
or A;	1) require more information corresponding

to these gaps (other sample or item) to be copied to

decide how they should be filled in. At the end, all

the )2 items disappear. Finally, a consistency test

is performed to check whether the policy counts

coincide for both the original and the inferred lists.
They should coincide since the copy neither creates

nor destroys knowledge.

This procedure seems to behave well, and we

use it whenever a base is to be assessed. Once

again, we try to avoid copying the full table by

copying a sample and using a procedure to infer

the rest of the table. Sometimes, the sample has to

be augmented because there is not enough infor-
mation for the inference. The complexity depends

on the list, i.e. its length, rather than on the full

copy, i.e. the table size.

All these ideas are combined with the algo-

rithms described in Section 3, see Appendix A with

their pseudo-codes, to yield a procedure that finds

reasonable solutions in a reasonable time.

The following example is fairly realistic in the
sense that it has many attributes and more steps

are required to achieve the optimum.

Example 7. In this case we have 11 binary attri-

butes, denoted with numbers from 0 to 10. The set

of alternatives is {0,1,2}. There are 256 unknown

cases out of a total of 2048 cases (i.e. 1792 known

cases). Figs. 8 and 9 show all the steps for reaching
the optimal base B20.

All the movements are towards bases in NH2ðBÞ,
where B is the current base at each step. In this

example, 16G6 35, and 16GH2 6 19. Since

there are too many items at the first three steps,

our software only represents the change of item

along the X -axis (not the number of cases within

each item). From B4 onwards, the spectrum is as
usual. The unknown cases are represented in

white.

Note that GH2 is high at the beginning, when the

current base is far away from the optimal base.

B5 ! B6 shows that a high G-value (¼ 18) pro-

duces a large improvement (�50%) on the list.

B11 ! B12 and B14 ! B15 show that a low G-value



Fig. 8. KBM2L spectra for Example 7 (I).
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Fig. 9. KBM2L spectra for Example 7 (II).
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(¼ 3) yields a small improvement (�1%). Also,

note the base change B0 ! B1 with GH2ðB0;B1Þ ¼
13 and B1 ! B2 with GH2ðB1;B2Þ ¼ 19. Some

improvement has been achieved (from 1680 items
to 1359), but the value GH2ðB0;B2Þ ¼ 12 shows

that B2 is closer than B1 to B0. This suggests an

explanation about the low magnitude of the

improvement.



J.A. Fern�andez del Pozo et al. / European Journal of Operational Research 160 (2005) 638–662 659
As the algorithm progresses, GH2 becomes
lower. B19 ! B20 shows that a medium G-value
(¼ 7) produces a large improvement (�50%).

Also, note how the number of switches de-

creases. It implies that the search becomes more

efficient, since it is easier to discard bases. With big

KBM2L lists, the algorithm may avoid testing

many probably bad bases, at the expense of only

computing G-values, which is very easy.
The optimal base is B20, with 10 items.
5. Discussion

The knowledge relative to the proposals of a

DSS is included in its decision tables. They are

accessed and managed as multidimensional
matrices. Multidimensional matrices are data

structures memorised sequentially by computer

systems as lists. The items, being adjacent and

identical proposals, mean that the length of the list

can be shortened while the same knowledge is re-

tained. Moreover, a good list is able not only to

reduce the list storage space but also to extract the

attributes that determine each proposal in the
contexts. This dual aim strengthens our proposal

of KBM2L lists to synthesise the knowledge via

reorganisation and generalisation of the table

information.

From a computational viewpoint, our approach

tackles a number of problems that arise when

searching for the optimal table organisation. We

guide the combinatorial search by means of a ge-
netic algorithm, and a variable neighbourhood

strategy with respect to a Hamming distance

proxy, introduced to capture the different types of

table organisations. We also propose learning

heuristics to allow for reorganising complex deci-

sion tables: the so-called fast and partial infor-

mation copying. Finally, to reduce the search

space by discarding candidates, we provide a
procedure to infer whether a given table organi-

sation is worse than the current one.

From a final user viewpoint, KBM2L operation

requires the construction of graphical representa-

tions (spectra geometrically and symbolically

describing the knowledge), query mechanisms that

make the dialog with the DSS easier, and expla-
nations of the results to validate the knowledge.
Our framework copes with all these issues.

The results of our tests appear to be excellent.

When applied to a real medical problem for neo-

natal jaundice management, a sizeable reduction in

the memory space (several orders of magnitude)

was achieved, together with explicit and synthes-

ised decision-making rules (Fern�andez del Pozo

et al., 2001).
In this medical problem, the model includes the

processes of admission, treatment and discharge of

a patient, all organised in an influence diagram

with 5 out of 61 nodes being decision nodes. For

example, the second decision variable depends on

21 variables, which is tantamount to a table with

4,013,162,496 entries. The fifth decision table is

even worse: it considers up to 5,309,410,000,000
different combinations! We had to partially eval-

uate the whole diagram by instantiating the evi-

dence on 17 nodes, which amounts to having

21,233,664 instances. But only 1000 instances, the

ones in which doctors were more interested in,

were instantiated. The result was five final decision

tables of a size of 18 MB. These results were later

composed incrementally in a KBM2L structure, as
explained above. Obviously, unknown items were

found in the KBM2L, because we did not evaluate

the whole problem.

The KBM2L for e.g. the second decision ini-

tially had 260 grains of knowledge covering the

whole set of 189,000 evaluated cases. After around

300 base changes, we got a representation of the

knowledge with only 16 items, which can be read
as 16 rules indicating the optimal policy as a

function of the key attributes, the fixed part of the

items. See Fern�andez del Pozo et al. (2001) for

details.

The use of our methodology for this kind of

problems is completely justified because of its

innumerable computational difficulties (Bielza

et al., 2000). Indeed, in the recent literature on
influence diagrams, there is a growing interest in

determining the variables that are relevant for each

decision, since the standard algorithms for solving

influence diagrams tend to construct policy func-

tions with too large domains (see Vomvelov�a and

Jensen, 2002). In contrast to our approach, which

is carried out after the diagram has been solved,
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their concern is to determine these variables
beforehand, by analysing the structure of the dia-

gram (see also Fagiuoli and Zaffalon, 1998; Niel-

sen and Jensen, 1999; Lauritzen and Nilsson, 2001,

among others.)

Applications are not confined to decision tables.

Our approach is also applicable to data coming

from databases, mathematical programs, data

acquisition systems, Internet, etc. Likewise in the
decision tables, the knowledge in any domain can be

represented through relationships among the rele-

vant attribute values and the propositions of inter-

est (decision alternatives, uncertainty measures,

clauses, system states. . .). For example, the synthe-

sis of conditional probability tables (e.g., posterior

distributions) would serve for performing diagnosis

in medical decision-making problems. Some work
has beenput intoways of capturing regularities, that

is, independencies held only in certain contexts of

these probability tables, the so-called context-

specific independence (Boutilier et al., 1996).

Other interesting ongoing research is to consider

permutations of orders in the attribute (discrete)

domains, at the expense of enlarging the search

space a lot. We might also implement a practical
method for performing sensitivity analysis by con-

sidering some parameters (probabilities, utilities,

dependencies, etc.) as attributes. The resultant

KBM2L would reveal whether or not each para-

meter, depending on its weight, keeps the response

constant when it is varied. A high weight would

show high sensitivity. Another research issue is to

deal with querying, including unspecified attribute
values (Fern�andez del Pozo and Bielza, 2002).

Mannila (2000) points out the lack of a data

mining theory. Bearing in mind the commonality

among data mining and our context, as regards

being able to model typical tasks like clustering,

classification, rule discovery, data compression,

comprehensibility of the discovered knowledge, we

hope our approach becomes a promising seed to
fill this gap.
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Appendix A

Here we show the pseudo-code for the VN

algorithm based on GH2.

set small, set large, set SMALL, set

LARGE

working listfiWL

WL.lengthfiItems, WL.Base ! B0

Repeat /*iteration*/

For all B s.t.HammingDistanceðB0;BÞ ¼ 2

(Atti and Attj are exchanged), do

0. if (Items is LARGE)^ ðGH2ðB0;BÞ is

small)_(Items is SMALL)^ ðGH2ðB0;BÞ
is large)

next(B)

1. Else, if (Atti is relevant_Attj is

irrelevant)

next(B)

2. NewBaseTest(B,Items)fiSwitches

3. If (Switches>Items) next(B)
4. Else, BfinewL.Base /* Target list */

5. Copy(WL,newL) /* Base change */

6. if (newL.length<Items)
newLfiWL and WL.BasefiB0

Step 0 explores bases far from (close to) the

current solution when we are far from (close to)

the best current solution. This step is specific of the

GH2 heuristic and if it is not used, the search is

performed using H2 (VNA-H2), which does not

take into account the attribute weights. The
instruction ‘‘next(B)’’ means the rejection of this

base. At Step 1, the relevance of the attributes is

exploited in terms of response explanation ability

(see Section 3.1). One relevant attribute should not

lose much weight and one irrelevant attribute

should not put on much weight. Step 2 computes a

lower bound, Switches, associated with base B (see

Section 4, ‘‘Test of a new base’’). At Step 3, if the
new list has more switches as a consequence of a

partial copy of cases, this new base is rejected.

Otherwise, Step 4 defines a target list with the new
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base. Step 5 performs the information copy or base
change. At Step 6, the search continues within the

new neighbourhood centred on the new base. The

algorithm stops when all neighbours are worse.

The GA pseudo-code is a standard one, since its

main operators (selection, crossover, mutation)

have already been specified within the text (see

Section 3.3).

Generate initial population

Compute the objective function for

each individual

Output the best individual

While stopping rule does not hold

Select parents from the population

Produce children from selected

parents

Mutate the individuals

Extend the population with the

children

Reduce the extended population to

its initial size

Output the best individual found
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