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Abstract

In#uence diagrams have become a popular tool for representing and solving decision making problems
under uncertainty (Shachter, Operations Research 1986;34:871}82). We show here some practical di$culties
when using them to construct a medical decision support system. Speci"cally, it is hard to tackle issues
related to the problem structuring, like the existence of constraints on the sequence of decisions, and the time
evolution modeling; related to the knowledge-acquisition, like probability and utility assignment; and related
to computational limitations, in memory storage and evaluation phases, as well as the explanation of results.
We have recently developed a complex decision support system for neonatal jaundice management* a very
common medical problem* , encountering all these di$culties. In this paper, we describe them and how
they have been undertaken, providing insights into the community involved in the design and solution of
decision models by means of in#uence diagrams.

Scope and purpose

Decision Analysis is a very well-known discipline that deals with the practice of Decision Theory (Clemen,
Making hard decisions: an introduction to decision analysis, 2nd ed. Paci"c Grove, CA: Duxbury, 1996). It
comprises various steps usually implemented in a decision support system: de"nition of the alternatives and
objectives, modelization of the structure of the decision problem, as well as the beliefs and preferences of the
decision maker. The recommended alternative is the one with maximum expected utility, once all the
assignments have been re"ned via sensitivity analyses. However, there are a number of di$culties faced in practice
when solving large problems, that require an attentive study. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Jaundice in newborns occurs when bilirubin* a yellowish pigment that is a byproduct of the
red blood cells* builds up in the blood system rather than being secreted from the liver into the
intestine and out of the body. Characterized by an yellowish cast to the skin, jaundice is very
common in newborns because it often takes a few days for the baby's immature liver to function
normally. High levels of bilirubin can develop in the blood and possibly be absorbed into the brain
cells, leading to irreversible brain damage, even death [1].

The accepted treatment is phototherapy, a technique developed in the 1960s in which infants are
exposed to special lights that break down excess bilirubin, although when the baby's bilirubin gets
close to harmful levels, the doctor can perform an exchange transfusion, a complete* and risky
* replacement of her blood. It is not very well stated at which point bilirubin levels are high
enough to require treatment and which one. Current recommendations try to balance the risks of
undertreatment and overtreatment [2].

Neonatology Service of Gregorio Maran8 oH n Hospital in Madrid is interested in studying this
problem as a Decision Analysis (DA)-based problem. The main purposes are to decrease the costs
of diagnostic and therapeutic phases, to include these new recommendations as well as various
uncertain factors and decisions, to de"ne better the moments to require and/or change the
treatment, and to take into account the preferences of parents and doctors. Also, the hospital
hopes to rely on an automated solution tool of this decision problem as an aid in the improvement
of jaundice management. To that aim, the Decision Analysis Group of Madrid Technical
University is developing a decision support system called IctNeo, see RmHos-Insua et al. [3] for its
initial conception. It represents and solves the problem by means of an in#uence diagram (ID) [4],
a more and more popular tool in DA, medical decision making included, see, e.g., Owens et al. [5]
and Nease and Owens [6]. While conceptually simple, the application of IDs' methodology in
practice may involve to a great extent large problems, encountering many di$culties that need
a solution.

This paper aims at revealing those di$culties concerning the use of IDs in large real problems,
which have led us to "nd solutions in our medical problem. Furthermore, we present them within
a more general context in order to be of crucial help for the designers of decision models by means
of IDs, contributing to the necessary advance of this developing tool.

The paper is organized as follows. Section 2 contains di$culties faced when constructing the
qualitative structure that models knowledge about the problem. Section 3 provides some elicitation
issues related to the quantitative information of the problem, namely, probability and utility
function assignment that represent beliefs and preferences, respectively, of decision makers. Section
4 is devoted to presenting computational issues basically with regard to the evaluation phase,
memory usage and explanation of the results. Finally, Section 5 presents the conclusions.

2. Structural issues

In this section we explain some di$culties commonly encountered when trying to capture the
structure of the problem from its de"nition given by the experts. As Clemen points out [7], most
literature does not explicitly discuss this initial step in decision modeling.
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2.1. Sequential decisions with constraints and varying decision horizon

Neonatal jaundice is present during the "rst days of a baby's life. As it is explained in the
introduction, high levels of bilirubin can cause toxic e!ects in the central nervous system. We can
consider that this critical period of time lasts at most 72 h after birth, even though it could be longer
in some cases. The doctor "rst decides whether to admit or not the baby to hospital and con"ne it,
eventually, to the intensive care unit. In case of being admitted, it is necessary to control the
bilirubin levels during this time, carrying out di!erent tests and giving the patient some of the
prescribed treatments: phototherapy, exchange transfusion, or observation, depending on some
factors of the newborn, like age, weight, bilirubin and hemoglobin levels, regardless the cause of
jaundice. Treatments are given along several consecutive stages, observing after each one the e!ects
on the baby, repeating the process as many times as necessary until the problem is over, i.e., the
infant is discharged or he receives a treatment that is outside our speci"c problem.

Since the treatment decisions depend at each stage on the same set of factors, we initially thought
of the structure of the treatment problem as a unique generic ID, repeated at each stage, the
ith-phase inheriting the information from the (i#1)th-phase as long as the ID evaluation
algorithm [4] progresses. Every decision node would be identical containing in its domain the
di!erent treatment actions and the hospital discharge. Yet, doctors consider it very important to
keep track of the evolution of the process through time, because therapeutic actions may be
di!erent depending on all previous decisions. Since doctors consider that the time between
a treatment and the next one lasts 6 h (the therapy given and the observation of its e!ects included),
it would be necessary to have a sequence of 12 decision nodes to meet at most 72 h. It entails an
intractable ID due to the considerable set of nodes and arcs.

Apart from this, there exists a number of constraints given by doctors on the chain of treatment
decisions, e.g., not to perform more than two exchanges per full treatment, to start the treatment
with observation or phototherapy, the exhange must be followed and preceded by phototherapy,
among others. A tree that represents these constraints on the whole process of 12 nodes would have
1878 endpoints. There is no way to represent this kind of knowledge in the ID if we want to keep all
the identical decisions mentioned earlier. It also yields a highly asymmetric ID, which in case of
being evaluated as traditionally [4], includes in its optimal policy sequences of decisions not
meeting the constraints. Some attempts to deal with asymmetric IDs are shown in, e.g., Fung and
Shachter [8], Call and Miller [9], Smith et al. [10], Covaliu and Oliver [11] and Qi et al. [12], our
asymmetries being overcome as explained below.

All these situations may obviously arise in many other problems in and out of the medical "eld.
By studying in depth our knowledge about the medical procedures for jaundice management, we
checked that those treatments were referred very often as a combination of the initial therapies of
6 h, leading to actions of di!erent length, e.g. a phototherapy of 6, 12, or 18 h long. We lose then
that simple time modeling and increase the number of actions at each decision node.

In order to avoid the high number of decision nodes and large domains, the problem with the
constraints, and the incoherent optimal policies, we proceed as follows, being at the same time
closer to doctor's thinking. We distinguish three types of treatment decisions: those of the initial
phase of the treatment, those of the main part of the treatment, and those of the "nal phase. The
initial phase corresponds to one decision node that contains alternatives allowed when starting the
treatment, as phototherapies of di!erent lengths and observations. The main part consists of two
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identical decision nodes, having in their domains the same alternatives than before and some
grouped treatments, e.g., phototherapy of 12 h plus exchange plus phototherapy of 6 h, always
satisfying the constraints. From that phase onwards, the end of the process (with a discharge or an
outside treatment) is already a possibility. The fourth decision node concerns light treatments like
phototherapies and the last node has only ending actions.

The combined treatments then become the alternatives at each decision point. This brings both
the system and the usual way of operating together. It also provides a solution for the problems
mentioned above, at the expense of increasing the di$culty of the decision domain de"nition. It
reduces the model to "ve decision nodes as well as the presence of incoherent sequences of
decisions, at least within the scope of the new combined therapies: those constraints not included in
the domain of the new therapies (because of a!ecting the whole process) will be considered once the
ID has been evaluated, as will be explained in Section 4.

2.2. Time modeling

Another problem related to time management stems from the variable length of the full process
of jaundice, e.g., there are patients who will need only one treatment stage. For that reason, the
subsequent decision domains are "lled in with dummy therapeutic actions (not to do anything),
leading to a far more asymmetric ID, with new incoherent sequences of decisions. For example, if
the baby was discharged at the second decision, it has no meaning to wonder what to do at the
third, fourth and "fth decisions. Also, it will imply later a harder assignment. This situation may be
typically encountered in other real problems with varying decision horizons.

The asymmetry is emphasized if we remember that the "rst decision was the admission of the
patient. If the baby is not admitted, the minimum length of time is achieved because the sequence of
treatment decisions does not make sense. However, the knowledge of both the model and its
asymmetries enables the simpli"cation of the ID evaluation process, since the utility function
values will be only computed for those allowed combinations of decisions. Consequently, we will
obtain computation and memory storage savings, as will be explained in Section 4.

3. Elicitation issues

We explain now some di$culties commonly encountered when trying to elicit the quantitative
information of the problem.

3.1. Probability assessment

Following the DA cycle, once with the qualitative structure for IctNeo ID, we proceed to model
the uncertainty inherent in the problem, "lling the probability tables associated with chance nodes.
It is essential to represent the uncertainty of various pathologies that may have an in#uence on
hyperbilirubinemia, and they will be updated with the information of the ID as long as it is
evaluated, being crucial for diagnosis. As an example of pathology, we mention here the isoimmun-
ization, a situation where mother and baby have di!erent blood types and mother produces
antibodies which destroy the infant's red blood cells, and a sudden buildup of bilirubin in the
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baby's blood may occur. There are chance nodes that model the results of some test related to
pathologies, and others model some factors of mother (age, Rh factor, race, blood group, "rst
delivery or not,2), and of newborn (birth weight, age, yellowish skin, blood group, Rh factor,2).
Finally, there are clinical "ndings like hemoglobin and bilirubin serum concentrations, also
modeled as random variables.

When the problem is structurally complicated, say a heavily asymmetric and dense large ID,
with continuous random variables, the probability encoding is extremely involved. We got out of
the problem of the continuity because doctors suggested the discretization of continuous variables
(like age, weight, etc.), feeling more comfortable with that approximation. Some probability tables
of moderate sizes were elicited by using historical data taken from the Neonatology Service of the
hospital, but most of them were assigned with the aid of subjective judgements. In this case, we
followed the SRI (Stanford Research Institute) encoding process and its extensions [13] as a formal
protocol for probability elicitation. We needed many interviews with doctors, trying to overcome
biases [14].

A chance node with many predecessors poses problems related to how to obtain from experts the
tables with so many entries and how to store and manage so much information. In general, if
a chance node i has n possible outcomes and k conditional predecessors (or parents), the parent
P
i
having m

i
states, the probability table of i will need n]<k

i/1
m

i
entries. In most situations, we

used generalized noisy OR-gates [15,16], an extension of the noisy OR-gate [17], leading us to
re-modelisations of our ID. The generalized OR-gate is based on a model of causal nature, with
some causes P

1
,2, P

k
acting to produce the e!ect X, all the causes and the e!ect having values

absent and present with various grades of intensity. The required assumptions are: `if the causes are
absent, then the e!ect is absenta, and `the grade X achieves is the maximum grade produced by the
causes acting independentlya. The only assignments required to derive the others are those of the
conditional probabilities of X given that all causes but one are absent, needing a number of
assignments that is linear with respect to the number of causes instead of exponential, as in the
general case. Now, because of the OR-gate assumptions and the probabilities adding to 1, the table
of X needs only (n!1)+k

i/1
(m

i
!1) assignments. Our medical problem had 56 chance nodes,

obtaining, with OR-gate modelisations, a reduction of 99.4% in the number of assignments
required.

3.2. Utility assessment

Once de"ned the motivation that will guide the system, we must provide the way in which we
study the in#uence of a policy on the major objective, to do the best for the patient. It is clear that
any decision will have an impact on her health. Hence, it will be necessary to provide the aspects
that permit to evaluate the consequences of the decisions. This may be done with the aid of experts,
constructing an objectives hierarchy, with the highest level of well-being for the patient as the
overall objective to achieve. This amounts to subdividing the objectives into lower-level objectives
of more detail, thus clarifying the intended meaning of the overall objective. An objective hierarchy
for our jaundice problem is shown in Fig. 1.

Note that we have the lowest-level objectives relative to minimize costs (X
1
), injuries due to the

application of speci"c treatments (X
5
) and the alteration of bilirubin levels (X

6
). We have also X

4
,

related to the stay at hospital and which arises from the risk of infections, contagions, etc. Finally,
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Fig. 1. An objectives hierarchy for our problem.

a hospital stay brings the inconvenience of visiting the baby every day (X
2
) and the interruption of

parent}infant bonding (X
3
). These two objectives measure the preferences of parents. For all

attributes except for X
1
, we introduced constructed scales, from interviews with the aid of doctors,

and also parents for X
2

and X
3
. This process caused the need of de"ning up to now new variables,

changing the ID again, even some assessed quantities.
Next, the preferences of the experts are represented through a multi-attribute utility function

[18], which leads to rank the strategies to obtain the most preferred one, i.e., we need to assess
a utility function u(x

1
, x

2
, x

3
, x

4
, x

5
, x

6
), where x

i
designates a speci"c level of X

i
. A direct

assessment of u presents major practical shortcomings, so we investigated various sets of indepen-
dence assumptions [18], about the basic preferences attitudes of the decision maker, to derive
a functional form of the multi-attribute utility function consistent with these assumptions. These
independent assumptions and assessments checkings were conducted during several sessions with
three doctors jointly from the Neonatology Service.

Then, we achieved a multiplicative utility function on (X
1
,>

1
"(X

2
, X

3
),X

4
,>

4
"(X

5
, X

6
))

with additive decompositions for (X
2
, X

3
) and (X

5
, X

6
). We explain now how we derived this

function. The "rst important step in selecting the form of the utility function involves investigating
the reasonableness of preferential independence and utility independence conditions. To facilitate
checking independence conditions and due to the homogeneity, on one hand, of attributes X

2
and

X
3
, and on the other, of X

5
and X

6
, we assume that such attributes might be structured

temporarily, substituting X
2

and X
3

by only one attribute>
2
, which represents `newborn}mother

gapa, and X
5

and X
6

by >
4

meaning `injuriesa, see Fig. 1. Hence, we should have by the moment
four attributes denoted>

1
"X

1
,>

2
"(X

2
,X

3
),>

3
"X

4
and>

4
"(X

5
, X

6
). Then, we intend to

determine a utility function of the form

u(y
1
, y

2
, y

3
, y

4
)"f [u

1
(y

1
), u

2
(y

2
), u

3
(y

3
), u

4
(y

4
)],

where f is a scalar-valued function, and u
i
a utility function over y

i
.

To determine the functional form of f, the process began by examining whether an attribute was
utility independent (u.i.) of its complement. After the motivation and familiarization of the doctors
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with the terminology, we veri"ed that attribute>
4

was u.i. of its complement>M
4
. For that, we had

to check whether the preference order for lotteries involving only changes in the level of >
4

does
not depend on the levels at which attributes >

1
,>

2
"(X

2
,X

3
) and >

3
are "xed. In a similar

manner, we veri"ed that >
2

was u.i. of >M
2
. Next, we checked that M>

4
,>

i
N was preferential

independent (p.i.) of its complement, for i"1, 2, 3. For that, we had to check whether the preference
order for consequences involving only changes in the levels of >

4
and >

i
does not depend on the

levels at which attributes >
j
, jOi, 4 are "xed.

Thus, such preferential independence conditions involving attribute `injuriesa>
4
, together with

the utility independence for >
4

of the other attributes, imply that the utility function u must be
either additive,

u(y
1
, y

2
, y

3
, y

4
)"

4
+
i/1

k
i
u
i
(y

i
) (1)

or multiplicative,

u(y
1
, y

2
, y

3
, y

4
)"

4
+
i/1

k
i
u
i
(y

i
)#k

4
+
i/1
j;i

k
i
k
j
u
i
(y

i
)u

j
(y

j
)

# k2
4
+
i/1
j;i
l;j

k
i
k
j
k
l
u
i
(y

i
)u

j
(y

j
)u

l
(y

l
)#k3

4
<
i/1

k
i
u
i
(y

i
), (2)

where k, k
i
, i"1, 2, 3, 4 are the scaling constants.

The logical next step in assessing u is to try to identify functions f
2

and f
3

such that

u
2
(y

2
)"f

2
[ux

2
(x

2
), ux

3
(x

3
)] and u

4
(y

4
)"f

3
[ux

5
(x

5
), ux

6
(x

6
)],

where the ux
i
's are utility functions over their respective domains. Note that, since>

2
is u.i. of>M

2
and

>
4

is also u.i. of >M
4
, we can just worry about whether X

2
and X

3
are conditionally additive

independent (c.a.i.) given that >M
2

is "xed at any level, and whether X
5

and X
6

are also c.a.i. given
that >M

4
is "xed at any level.

For that, we "rst examined the appropriateness of the c.a.i. assumption for X
5

and X
6
. When we

tried to check the additive independence axiom, doctors found involved to provide an answer to
the corresponding comparisons, so we decided to consider the alternative test of additivity based
on: (1) mutual conditional utility independence (c.u.i.) between X

5
and X

6
and, (2) there are levels

xa
5
,xb

5
, xa

6
and xb

6
, such that

A
0.5 0.5

(xa
5
, xa

6
) (xb

5
, xb

6
)B&A

0.5 0.5

(xa
5
, xb

6
) (xb

5
, xa

6
)B,

both lotteries for any "xed level of attributes X
1
, X

2
, X

3
and X

4
. In an analogous way, we found

easier to test the c.a.i. between X
2

and X
3

given that >M
2
, by proceeding as above. Hence, we

obtained additive utility functions for >
2

and >
4

given by

u
2
(y

2
)"kx

2
ux
2
(x

2
)#kx

3
ux
3
(x

3
) and u

4
(y

4
)"kx

5
ux
5
(x

5
)#kx

6
ux
6
(x

6
). (3)
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Table 1
The single-attribute utility functions

Attribute u
i

Range

X
1

u
1
(x

1
)"1.604!0.604 exp(0.00077x

1
) [0, 1260]

X
2

ux
2
(x

2
)"!0.1108#1.111 exp(!1.153x

2
) [0, 2]

X
3

ux
3
(x

3
)"!0.225#1.225 exp(!0.8473x

3
) [0, 2]

X
4

u
4
(x

4
)"1.277!0.2766 exp(0.5098x

4
) [0, 3]

X
5

ux
5
(x

5
)"1.361!0.361 exp(0.3316x

5
) [0, 4]

X
6

ux
6
(x

6
)"1.408!0.4083 exp(0.2476x

6
) [0, 5]

Moreover, to gain more con"dence in the consequences we decided to apply, after the utility
assessments, an alternative test of additivity based on tradeo!s not involving lotteries, see Delquie
and Luo [19], obtaining similar results.

Once with the structure, we assessed the component utility functions and the scaling constants.
This was done with the aid Logical Decision [20], a decision support software for multi-attribute
analysis. To assess the single utility functions, the program uses the midvalue splitting technique
[21], a procedure to identify the level that is exactly midway in preference between a low level and
a high level for di!erent attribute subranges. With the mid-preference levels established, the
simplest method to construct the utility functions is to draw smooth curves, and for that, the
program "ts exponential functions, a#be~cx, by estimating their parameters. These functions are
mathematically enough smooth to accommodate in most cases the decision maker's preferences.
Table 1 shows the "tted component utility functions for all the attributes.

Once the measures have been made comparable by de"ning a utility function for each attribute,
the next step is to combine the individual utility functions into the overall function (1) or (2), with
components (3), with the aid of the software and the doctors responses again. To establish the
relative importance of each attribute, we assessed "rst the weights or scaling constants k

i
. The key

element to establish such relative importance is a tradeo!, which proceeds as follows. Let us
consider the case of attribute >

1
: if ym

1
represents the average value over its range, we consider

comparisons of the form

A
p
1

1!p
1

(yH
1
, yH

2
, yH

3
, yH

4
) (y

1H
, y

2H
, y

3H
, y

4H
)B&(ym

1
, y

2H
, y

3H
, y

4H
). (4)

The doctor must provide p
1

such that he is indi!erent to the lottery and the sure consequence in (4).
Then, from the properties of the utility function, we have that p

1
"k

1
u
1
(ym

1
) and hence,

k
1
"p

1
/u

1
(ym

1
). We obtained +4

i/1
k
i
"0.430O1, see Table 2, so the multiplicative utility function

(2) is appropriate and the additional constant k must be found. Moreover, since it is +4
i/1

k
i
(1, it

follows that k3(0,R) and we shall determine k as the solution to 1#k"<4
i/1

(1#kk
i
), see

Keeney and Rai!a [18].
For evaluating the scaling constants kx

i
in the additive utility functions (3), we used the same

procedure based on tradeo!s but taking into account the consistency requirements kx
2
#kx

3
"1

and kx
5
#kx

6
"1. The values of the scaling constants for (2) and (3) are shown in Table 2.
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Table 2
Weights for the utility functions

Multiplicative function Additive function

k
i

Value kx
i

Value

k
1

0.109 kx
2

0.578
k
2

0.031 kx
3

0.422
k
3

0.181 kx
5

0.558
k
4

0.109 kx
6

0.442
k 6.329

Note that constant k determines the type and degree of interaction between attributes. Since
k"6.329'0 and +4

i/1
k
i
(1, we have a destructive interaction: low utility on one attribute can

result in a low overall utility.
In short, the utility assignment was hard-work, involving many assumptions and consistency

checks. Gomez et al. [22] gives a more detailed and technical explanation.

4. Computational issues

This section "rst addresses the representation of the decision problem with an ID by means of an
ad hoc grammar. We then study the relationship between the size of our problem and the required
storage capacity. As far as the evaluation of the ID is concerned, we incorporate some improve-
ments to the standard algorithm [4]. These include the search for a good deletion sequence, the
postponement of the computation of the expected utilities when a chance node is going to be
removed until necessary, and the incorporation of knowledge about the asymmetries of the model.
All these improvements decrease the storage capacity in the problem-solving process. Finally, we
illustrate how the system generates the solution to the problem and its explanation.

4.1. Grammar for the ID representation

We use an ad hoc grammar to represent the ID. It is a solution used in other projects and
commercial programs, not only for IDs but also for any kind of Bayesian networks. Speci"cally,
there is an e!ort at Microsoft to set up a standard grammar based on this idea. This approach
would provide an easy interchange of "les among di!erent working groups. The advantages of the
use of a grammar are obvious, e.g., the ease of modifying and looking at any element of the
problem, provision of a module separate from the evaluation module (which would not need to be
compiled if the former is modi"ed), etc. A part of an ID with this grammar is shown in Fig. 2.

Note that we de"ne the name of the nodes, reporting their type (chance, decision or value),
a unique code, and their parents. For decision and chance nodes, we include their domains.
Furthermore, for a chance node, we must provide its probability table by either specifying all the
values or using OR-gate parameters. In the latter case, the system will generate the whole
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Fig. 2. Grammar for an ID.

probability table from OR-gate model formulas internally. There are two possible procedures for
inputting the value node table. The "rst procedure is to specify the values of the utility function, as
shown in Fig. 2; the second is to give instead the values of the parameters and scaling constants that
de"ne the functional form of this function. This second approach is specially useful for studying the
e!ect of changes in any of the subobjective functions considered in Section 3.2 on the problem, as
part of the sensitivity analysis process.

The speci"cation of the diagram, stored in a "le with a special extension .stx, is then compiled.
The "rst objective is to check for syntactic or lexical errors. Then, the program validates the
information contained in each node: for non-existent parents, consistency of the speci"ed or
generated probability distributions, two di!erent assignments for the same entry, etc. At this point,
the system internally constructs a reduced version of the diagram, which checks whether the ID is
regular and oriented, as the solution algorithm [4] demands. In preparation for the evaluation
process, the system adds the necessary no forgetting arcs and removes the barren nodes. The
compilation process ends and the ID, which is stored in an object "le with a special extension .com,
can start to be evaluated.

4.2. Search for a solution with minimum storage

Fifty-six chance nodes, six decision nodes and 169 connective arcs are needed to represent the
jaundice problem. The storage of the probability distributions alone requires 71020 memory
positions. During the problem-solving process, the value node inherits the predecessor nodes of the
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Fig. 4. Example.

Fig. 3. Maximum storage capacity required for some IDs.

removed chance nodes and the need for storage capacity at this node is increased enormously.
Fig. 3 shows the evolution of storage requirements with respect to the number of nodes and arcs
when solving some diagrams used in our problem. This is more sensitive to an increase in arcs.

For our "nal diagram, whose characteristics were speci"ed above, we require a maximum
storage capacity (for the operation that brings about the highest increase) of 3.03]1013Mb, where
the average size of the problem is 3.18]1012Mb. The problem-solving process becomes un-
manageable.

The "rst task then is to "nd a deletion sequence that does not yield a very high computational
burden. We know that although all the deletion sequences lead to the "nal solution, they may
involve di!erent computational e!orts depending on the sequence in which chance nodes are
removed and arcs reversed. Yet, to "nd one such sequence is an optimization problem that has been
shown to be NP-hard. Therefore, we try to overcome this storage problem using a heuristic that
"nds good deletion sequences. The one-step-look-ahead heuristic [23] for example, indicates that
the next node to be deleted is the one that leads to computations over the smallest domain. Thus, it
takes into account only one operation (ahead), not leading in general to the best sequence, i.e., the
one with minimum storage requirements. The best deletion sequence at one stage, as outputted by
that heuristic, may involve a bigger e!ort for the next stages than a worse one would have. We
illustrate this idea based on the example of Fig. 4.
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Table 3
Computations for two deletion sequences

Arcs d entries
before
reversal

d entries
after
reversal

Next
removal

d entries
now

(<
1
,<

2
) X X <

1
X/5

(<
3
,<

4
) X X <

3
X/10

We cannot remove any chance node or any decision node. Thus, we reverse an arc, i.e., arcs
(<

1
,<

2
) or (<

3
,<

4
). Based on the possible number of values of each node (shown in parenthesis

inside the node), we determine the associated cost of each deletion sequence, see Table 3. The total
number of entries for the whole problem is the same with either arc reversal. The next step will
involve removing the chance node (see column 4) which was the origin of the reversed arc, thus
leading to di!erent reductions in the number of entries. The sequence that picks arc (<

3
,<

4
) as the

"rst one to be reversed yields better storage requirements. The example shows how two deletion
sequences that could be chosen by Kong's heuristic at a certain step of the evaluation algorithm
can then lead to di!erent computational e!orts.

This situation may occur during node removals. Therefore, the search for the optimal deletion
sequence to carry out the computations should consider the full evaluation of the diagram. In this
respect, the ideal would be to calculate the total space required by each possible sequence (say,
all-steps-look-ahead), obtaining the sequence that demands least space. However, this is not easy
because the number of possible problem-solving sequences makes an exhaustive search impracti-
cable.

So, we need a criterion to guide this search. For our problem, at all the stages of the algorithm
where we "nd two or more candidate deletion sequences, we select only two for the search: the
sequences with the largest reduction (or, at least, the smallest increase in the worst case) in the
storage space. Even so, we would have 2n candidates in an ID solved in n iterations, assuming that
we "nd only two sequences at each iteration. This is still too many to allow an exhaustive
exploration of all the sequences for our tested IDs. Therefore, if after the evaluation of one million
alternatives, we have achieved a reduction of 50% or more in the problem storage, the exploration
ends. Otherwise, we continue exploring solutions until they are exhausted or until four million
trials have been conducted. This approach does not assure that we will come up with the optimal
deletion sequence, but it will always be an improvement on the evaluation of the diagram with the
one-step-look-ahead heuristic.

4.3. Computations in the ID evaluation

As mentioned above, since the value node inherits the predecessors of the removed chance node,
this operation may produce an increase in the utility tables. Nevertheless, the utility function does
not necessarily have to be computed at this time, avoiding the storage of the table in question. In
the constructed system, we postpone this computation until it is indispensable (or advisable). This
will be when a decision node is removed, i.e., when we have to compare the expected utilities of
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di!erent decision alternatives for all the possible combinations of values of the remaining nodes
with arcs into the value node.

The system should operate by remembering the chance nodes that have been removed and the
arcs that have been reversed, without determining their associated expected utilities. The saving in
the storage capacity is o!set by the fact that when the decision is removed, we have to carry out all
the computations that were not made previously. Therefore, the increase in storage capacity
involves more computation time. Thus, it is better to take a mixed approach where when a chance
node is removed, we compute the expected utilities whenever this implies a saving in the storage
capacity with respect to the previous structure of the diagram. So, the expected utilities will be
computed whenever a decision node is removed and whenever it involves savings in the storage
capacity for the operations of chance node removal.

Another improvement on the standard algorithm for solving IDs, otherwise indispensable to
cope with our large medical problem, is to take advantage of the asymmetries of our problem due
to constraints on decisions in order to avoid the computation of some expected utilities, speci"cally
those of incoherent decision sequences. For example, we know that the chain of treatments makes
sense only if the patient has been admitted ("rst decision for consideration), and the computation of
the expected utilities would be in order only in the event of admission to hospital. Since we have
used the constraints on decisions to avoid the computation of certain expected utilities, it will
sometimes be necessary to call the original utility function. This need increases computation time,
without however, collapsing system storage capacity.

In short, the analyst starts from the compiled "le corresponding to the ID. The evaluation
process is searched to minimize the storage requirements. Finally, having determined the order in
which the operations are to be sequenced, they are carried out subject to the considerations above.
The computation of expected utilities is postponed until a chance (sometimes) or decision node is
removed leading to a reduction in the size of the problem. The result of this evaluation is stored, as
part of the global solution to the problem, and will be the starting point for subsequent computa-
tions, although it will sometimes be necessary to determine certain values from the original utility
function, because of the constraints.

4.4. Explanation of results

The ID solution provides a knowledge base (KB) representing the optimal policy, i.e., the
sequence of decisions to be made, given any clinical record. As mentioned in Section 2.1, there are
some constraints a!ecting the whole process that might not be met by a system output. The system
makes a "nal examination of the constraints once the optimal policy has been obtained in order to
discard the above outputs. Doctors have an interest in receiving an explanation of the proposed
action in terms of their usual terminology rather than of a numeric value (the maximum expected
utility). For this purpose, we propose to use data base (DB) techniques of knowledge search. For
any system recommendation, the explanation model will detect its irrelevant factors, i.e., factors
that lead to the same decision being made regardless of their values. In terms of relational data
bases, this amounts to obtaining the multivalued dependencies [24], given by X"x

i
{D in

n
D
(p

X/xi
(KB))"n

D
(p

X/xi
&Z/zj

(KB)), (5)

∀KB register, ∀z
j
,
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Fig. 5. The architecture of IctNeo system.

where D is the decision to be explained; X is an element of the set of parts of the predecessors C(v) of
the value node, after D removal; Z"C(v)CMXN; n

D
is the projection on D; p

X/xi
consists of DB

entries satisfying X"x
i
.

Since the exhaustive application of condition (5) will probably yield few dependencies, it is
relaxed by the algorithm, and the user is able to de"ne the desired satisfaction percentage for
dependencies. The system stores the dependencies found, which are used to show the user the "nal
explanation. It is closer to the language employed by the user (doctor), making system validation
easier (this phase is still under development).

Fig. 5 shows an overview of system operation. Note that the end users will only be able to access
the explanation and query modules.

5. Conclusions

IDs are widely known to be a useful tool in Decision Analysis. Yet, a series of di$culties arise
when they are to be used in practice for solving large problems. These comprise features related to
all the steps in the DA cycle. These di$culties have been discussed, focusing on the phases of
structuring, quantitative information assignment, and computational problems. Their description
and how they have been addressed, will provide insights into the community involved in the design
and evaluation of decision models by means of in#uence diagrams. A real medical problem,
a long-term (two-year) project developed jointly with a hospital in Madrid, was used to illustrate
the ideas. Work on the project is ongoing, addressing the "nal steps of validation and results
analysis.
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