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Abstract

Many factors influence the incidence of mechanical damage in fruit handled on a grading

line. This makes it difficult to address damage estimation from an analytical point of view.

During fruit transfer from one element of a grading line to another, damage occurs as a

combined effect of machinery roughness and the intrinsic susceptibility of fruit. This paper

describes a method to estimate bruise probability by means of logistic regression, using data

yielded by specific laboratory tests. Model accuracy was measured via the statistical

significance of its parameters and its classification ability. The prediction model was then

linked to a simulation model through which impacts and load levels, similar to those of real

grading lines, could be generated. The simulation output sample size was determined to yield

reliable estimations. The process makes it possible to derive a suitable line design and the type

of fruit that should be handled to maintain bruise levels within European Union (EU)

Standards. A real example with peaches was carried out with the aid of the software

implementation SIMLIN†, developed by the authors and registered by Madrid Technical

University. This kind of tool has been demanded by inter-professional associations and

grading lines designers in recent years.
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1. Introduction

A growing demand for higher quality fresh fruit and vegetables has revealed a

world-wide problem concerning mechanical damage of products reaching the

consumer through the distribution chain. Harvesting, handling, post-harvest

treatments, packaging, transport and fruit distribution involve a large number of

mechanical operations that subject the produce to dynamic loads, mainly impacts.
Mechanical handling on grading lines is one of the most hazardous operations as far

as mechanical damage is concerned. International studies demonstrate the high

agressiveness of fruit grading lines (Miller and Wagner, 1991; Timm et al., 1991;

Sargent et al., 1992; Ortiz-Cañavate et al., 1999). One of the problems to account for

the aggressiveness of grading lines is that damages not only appear immediately after

grading but up to 48 h later. These are called latent damages (Prussia et al., 1987),

and many times have been referred to as transport damages. Two thirds of the crop

could be damaged in grading lines, according to observations in the Murcia region of
Spain (National Research Project PTR 94-0082): 20�/40% of damaged fruit with

bruises visible just after grading, and 40�/60% of damaged fruit with latent damages.

A scrupulous analysis of grading lines has proved to be useful for locating the

elements and intermediate connections, also referred to as transfer points,

responsible for such dynamic loads, as well as for finding out how to reduce the

damage they cause. There are some reasons why grading lines tend to generate large

percentages of damaged fruit (Garcı́a-Ramos et al., 2002). First, grading lines are

customised solutions, which need to fit into a given building. This fact makes them
difficult to be compared without specific data. Second, the way transfer points are

mounted may be critical. We often find structure elements beneath the falling path,

which cause the impact intensity to rise dramatically. Third, the maintenance of

grading lines is deficient most of the times. This fact leads to situations where the

padding materials are deteriorated or have been substituted without enough

knowledge on the subject, including more elastic material than energy absorbing

ones.

The high fruit handling rate of a grading line*/typically 15 t/h for a 1.5 m-wide
line*/rules out on-line testing of gradual improvements unless they have previously

proved to be successful. Despite efforts to establish algorithms to evaluate grading

lines in relation to mechanical damage (Barreiro et al., 1997), the complexity of

grouping the aspects of a fruit-grading line system in a mathematical model has

prevented the achievement of analytical solutions and/or the development of realistic

simulations. Wide interprofessional associations such as CTIFL (http://www.ctifl.fr)

or VCBT (http://www.agr.kuleuven.ac.be/aee/vcbt) and grading line designers, are

major applicants for decision support systems on damage reduction in fruit grading
lines. The Physical Properties Laboratory (LPF) of the School of Agricultural

Engineering at Madrid Technical University makes consultant work on the subject.

In this paper, we use logistic regression to estimate bruise probability on a fruit

grading line. Some researchers also used logistic regression for bruise probability

estimation but in a very different way. Bollen and Cox (1991) predicted the

probability of bruising with regard to a particular transfer point. They first
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determined bruise probabilities as a function of the impact characterised by drop

height (mm) at the transfer point, fitting a logistic function. To do so, they used data

obtained in the laboratory when dropping fruit from a range of selected heights onto

selected surfaces (typical impact surfaces used on grading lines). Bollen (1993) used

the same approach, considering the impact characterised by its energy instead of the

drop height at the transfer point.

To estimate the final bruise probability for a fruit crossing a certain transfer point,
these authors (Bollen and Cox, 1991; Bollen, 1993) assumed that the number of

bruises at the transfer point are distributed according to a Poisson distribution.

Then, the probability that a fruit is bruised for an isolated transfer point is the

probability that the number of bruises do not equal zero. However, we need the

bruise probability not only for a particular transfer point but also for simulating the

whole grading line (elements and transfer points travelled). Moreover, besides

impact, it is essential that the model considers the inherent fruit susceptibility to

bruise occurrence.
The research presented in this paper includes four primary objectives. These were:

first, to predict fruit bruise probabilities given a data set of measurable fruit

characteristics; second, to characterise bruise probabilities as an appropriate set of

distribution parameters for a particular fruit species or variety; third, to characterise

industrial fruit grading lines as a database of rules and constraints and fourth, to

simulate the behaviour and interaction between fruit and industrial grading lines.

The methodology is illustrated and discussed through a real example.

2. Background

A grading line machine is a series of elements, placed in a well-defined order,

which manipulate and prepare harvested or stored fruits for marketing. It is typically

composed of specific elements (one per line) such as dumper, sizer, packaging area,

which are connected by generic elements, including conveyors, rollers and chutes.

Each element can take a different form, e.g. twist chain dumper versus box dumper,

with very different levels of aggression. The transfer points between two consecutive
elements, either specific�/generic or generic�/generic are the main cause of impacts in

a grading line. The number and type of transfer points vary from line to line, since

they are designed to fit the configuration of the building in which the grading line

will be installed. Thus, there are rarely two identical grading lines, leading to the

need for evaluating the performance of individual cases.

Fruit bruising, the main type of mechanical damage, occurs as an overall effect of

two combined factors: machine roughness and intrinsic fruit susceptibility (Barreiro

et al., 1997).
Electronic fruits, similar to the fruit in size and shape, are used in grading lines to

assess machine roughness (Garcı́a et al., 1996). They can locate critical points in

grading lines, characterising them by several parameters. All impacts are labelled by

their intensity in terms of deceleration units (g �/m/s2, where g refers to gravity

acceleration) and the type of surface responsible for the impact of the fruit
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(characterised by velocity change in m/s). When an electronic fruit is handled

repeatedly on a grading line, the impact distribution at each transfer point, TP, may

be estimated. The accuracy of the experimental data for bruise probability depends

on the number of runs of the electronic fruit along the line, 14 for the data cited by

Garcı́a et al. (2000). So far, databases concerning the roughness of specific transfer

points in commercial grading lines are available. These databases use impact

intensity discretised in ranges for the characterisation of each transfer point. For
example, if we consider four different intervals, we could get: P (TP yields impact5/

50g )�/0.6, P (TP yields 50g B/impact5/100g )�/0.2, P (TP yields 100g B/impact5/

150g )�/0.1, P (TP yields 150g B/impact5/200g)�/0.1. Values above 200g should

never be achieved in a grading line. These intervals have been proposed in Miller and

Wagner (1991).

Intrinsic fruit bruise susceptibility can be assessed by means of laboratory tests

(quasi-static and dynamic loading). Well-known relationships between bruise

susceptibility and physical and rheological properties of fruit exist and are outlined
by Garcı́a and Ruiz-Altisent (1997). Thus, bruise susceptibility increases for lower

curvature radius of surfaces in contact, higher tissue turgidity, higher visco-elastic

behaviour, lower fruit firmness, etc. Yet, by no means all the sources of variation

related to bruise susceptibility have been identified. Furthermore, bruise suscept-

ibility is heavily dependent on particular varieties and harvest and post-harvest

treatments.

Modelling bruise susceptibility consists of obtaining empirical relationships

between a bruise characterisation measure (dependent variable) and different
quantities (independent variables) taken from the above laboratory tests on a

variety-based approach. A proper selection of the bruise characterisation measure is

basic, and it depends heavily upon the behaviour of fruit. In many cases bruise

volume (mm3) has been used for modelling bruise susceptibility (Kampp and

Pedersen, 1990; Chen and Yazdani, 1991; Jones and Holt, 1991). However, the

unpredictable behaviour of many species and varieties for the onset of bruising,

rather points to bruise probability as the best characteristic for modelling bruise

susceptibility in these cases (Garcı́a et al., 2000).
Most of the instrumental variables used for modelling bruise susceptibility have

been summarised (see Garcı́a et al., 2000) as: Load Level (N or m/s2, for quasi-static

and dynamic tests, respectively), Deformation at Skin Puncture (mm, related to

tissue turgidity), Stress Relaxation (dimensionless, related to the visco-elastic

behaviour), Magness�/Taylor Resistance (N, related to fruit firmness), Fruit Mass

(g, related to impact energy under free-fall conditions), Curvature Radius (mm,

related to the stress accumulation in tissues), Fruit Deformability Modulus (N/mm,

force to a specific fruit deformation), Rheological Behaviour (per mm, related to
changes in the deformability modulus for an increasing load level), etc.

An important issue when using instrumental measurements for modelling

purposes is to address their accuracy (proximity to a true value) and precision

(repeatability). The accuracy for an instrument or instrumental procedure is difficult

to assess when there is no certified reference available. Precision may be accounted

through the standard deviation (S.D.) of replicates on the same specimen. In the case
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of individual fruits, intra fruit variability of mechanical properties has to be isolated

from the precision of measurements, accounted as S.D. for local measurements. As a

general measure, intra fruit variability lies between 10 and 20% of the average, i.e. 4

N for a 20 N firmness peach assessed as Magness�/Taylor Resistance. The S.D. at a

local level, referring to precision, lies between 6 and 10% of the average, i.e. 2 N for

20 N firmness peach assessed as Magness�/Taylor Resistance. Under controlled

conditions the variability in load level for laboratory tests is very low, with variations
below 1% of the average.

The final input for modelling bruise susceptibility is usually a data matrix with as

many rows as fruits tested. Columns in the matrix refer to a pool of mostly

continuous variables, plus a Boolean variable indicating whether the fruit is actually

bruised by a controlled test for several possible load levels (1, bruised; 0, non-

bruised). Following European Union (EU) standards, a fruit is considered bruised

for bruise sizes above 1 cm2 in pome fruit (apples and pears) and 0.5 cm2 in stone

fruit. Each time a fruit is labelled as 1 (bruised), the bruise size exceeds the above
numbers and, therefore, no further bruise categories need to be considered. On the

other hand, a grading line should not exceed 10% of damaged fruit to be within the

EU tolerance level. Within this context, the following logistic regression model is

proposed.

3. A logistic regression model for estimating bruise probability

Let y be the bruise response variable and x1, . . ., xn the remaining variables in the

data matrix. Then the model is defined as:

ln
p

1 � p
� f (x1; . . . ; xn); (1)

where, p�/P (y�/1jx1, x2, . . ., xn). Function f may be a linear function b0�/b1x1�/

. . .bnxn of observations (x1, . . ., xn) and/or have non-linear terms.

The impact or load level applied to the fruit is always a variable xi present in the

data matrix in our case because it is needed at each transfer point for the simulation.

3.1. Data analysis

Data analysis is performed mainly to remove the multicollinearity between xi ’s. It

is well-known that a model with several predictors has the potential for strong

correlations among them, implying that some of them are redundant. Although
treated extensively in the linear regression literature, multicollinearity has received

very little attention in the logistic regression literature (Ryan, 1997). Since our

predictors are all continuous, draftsman plots (an array of scatter plots) and the

correlation matrix help us to detect this feature and we include it as part of the

software program.
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3.2. Model construction

We first estimate the parameters of the logistic regression model by the method of

maximum likelihood, based on a user’s database. This is a fundamental requirement,

since each variety, production area and procedure has a specific bruise susceptibility

layout. Maximum likelihood estimators bi are obtained by maximising the logarithm

of likelihood function L with respect to b ,

ln L�
X

i

�
yi ln

�
ex?ib

1 � ex?ib

�
�(1�yi)ln

�
1

1 � ex?ib

��

�
X

i

yix?ib�
X

i

ln(1�ex?ib) (2)

where, b ?�/(b0, b1, . . ., bn) is the vector of coefficients and x ?i �/(1, xi 1, . . ., xin) is

the i-th observation on the corresponding n explanatory variables. This vector

would include components xij �/xik when considering non-linear xjxk interactions.

Unfortunately there is no analytical solution for bi but we may resort to using a

Newton�/Raphson iterative procedure. Each cycle in this procedure provides an
updating formula given by:

b(k�1)�b(k)�(X?WX)�1X?(Y�Y) (3)

where Y denotes the vector of response values, X denotes a matrix with each row

given by (1, x ?i ), Y denotes the vector of estimated values at that iteration pi�
ex?ib

(k)

=(1�ex?ib
(k)

); and W denotes a diagonal matrix with elements pi(1�pi): This

formula is used until the estimates converge. The choice of the preliminary estimator

is irrelevant. No single convergence criterion appears superior to the others. The

SIMLIN
† software (see Pacios, 1999; Heradio, 2000 for its implementation) takes into

account the change between successive steps in parameter estimates.

The maximum likelihood approach will generally perform well for large sample

sizes. However, the estimators do not exist when the data are quasi-completely

separated (Albert and Anderson, 1984). This means that there exist constants (a0,
. . ., an), with at least one aj "/0, j�/1, . . ., n , such that a0�/a1x1�/. . .�/anxn ]/0 for

all yi �/1, and a0�/a1x1�/. . .�/anxn 5/0 for all yi �/0. In other words, there is a plane

such that all x ’s corresponding to yi �/1 (yi �/0) are placed on one side (opposite

side) of this plane. Although perfect prediction might be expected when data are

separated, we are not going to encounter it very often because we have large sample

sizes. Also, undefined expressions in the log likelihood are derived. To detect these

troubles, SIMLIN† requires from the user the maximum number of iterations to

perform. If this limit is exceeded without achieving the desired change, the process is
terminated.

Model selection strategy is based on a backward stepwise elimination procedure.

Backward selection should give an adequate model whenever the initial model is

adequate (Christensen, 1997, p. 215). We start with the model that contains all the

linear and quadratic effects (xi and xixj terms, respectively). Quadratic terms allow

the assessment of interaction between two independent variables. This preliminary
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model was judged to be adequate because of its interpretability and its consistency

with model assumptions (Christensen, 1997), as suggested by the experts from the

LPF. It is hierarchically well formulated since it contains all lower-order components

of any term in the model. During the backward process, if a product term is found

significant, the Hierarchy Principle requires that all lower-order components to

remain in all further models considered (Kleinbaum, 1994).

The backward procedure eliminates at each stage the term in the model that has
the largest p-value when we test that its coefficient equals zero, i.e. it removes the

least significant variable that does not meet the level for staying in the model. Once a

variable is removed from the model, it remains excluded. The process is repeated

until no other variable in the model meets the specified level for removal. Note that

this process is computationally costly in spite of examining a limited number of

models, as in every stepwise process. As discussed by Hosmer and Lemeshow (1989)

no research results have been reported that would suggest a reasonable value of p in

logistic regression. In any case, the SIMLIN
† software allows the user to specify the

value of p when operating in expert mode. In user mode the value of p is

automatically fixed at 0.1.

Thus, we want to compare two (nested) models during the backward process, i.e.

the hypothesis that the simpler model M0 holds against the alternative that the more

complex one M1 holds, has to be tested. These models can be compared by

comparing their deviances. The deviance in logistic regression corresponds to the

residual sum of squares (SSE) in linear regression. Given a model M with expected

values pi its deviance DM is defined to be:

DM��2
X

i

�
yi ln

�
pi

yi

�
�(1�yi)ln

�
1 � pi

1 � yi

��
: (4)

Note that the first (second) term is considered zero when yi �/0 (yi �/1). Given

that M1 holds, the statistic for testing that M0 holds is DM0
�/DM1

, which is an

approximate x2 statistic, with df equal to the number of additional nonredundant

parameters that are in M1 but not in M0 (Agresti, 1996). Since in our backward

process we will always use a null hypothesis with only one parameter equal to zero, it
implies df�/1. This test is equivalent to the F test for comparing linear regression

models.

Once we have a good model, SIMLIN
† displays its output data: (a) the final

maximum likelihood estimate b of the parameters; (b) the estimated standard error

of the parameter estimate, computed as the square root of the corresponding

diagonal element of the estimated covariance matrix (X?WX)�1; (c) the t -value,

computed as the parameter estimate divided by its standard error estimate, which is

sometimes called the Wald statistic. Commonly encountered in any logistic
regression package, this statistic is used in assessing the significance of a coefficient

individually. Though it has the same form as a t-statistic, under the hypothesis that

the coefficient is zero, it is asymptotically normally distributed with a large sample

size required. Some authors have questioned its use (see e.g. Hosmer and Lemeshow,

1989, p. 17).
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We also compute predicted responses pi for each observation i (estimated

probability that fruit i bruises), together with 95% (approximate) usual confidence

intervals for probabilities pi .

3.3. Evaluating model predictive ability

Even though a residual analysis is not appropriate here (Christensen, 1997, p. 131,

247) and diagnostic procedures are not, and maybe never will be, completely

formalised (Ryan, 1997, p. 307), we deal with the problem as follows.
Since we are interested in predicting whether a fruit will or will not be bruised from

the estimated bruise probability. Thus, a meaningful measure of the worth of the

model would be the percentage of fruit in the data set that are classified correctly.

Accordingly, we use the correct classification rate as a measure of the fit of the

model. This statistic is potentially more informative than the p -value of a goodness-

of-fit statistic (Ryan, 1997, p. 269). The classification of observations into groups is

based on a cutoff value for pi: All observations whose pi is greater than or equal to

this value are classified as damaged fruit; otherwise, as undamaged fruit. Therefore,
we compare observed values and discrete predicted values of the dependent variable.

Should a comparison of observed values and continuous predicted values (prob-

abilities) be wanted, a number of alternative measures or analogs of R2 (coefficient of

determination) have been proposed. Menard (2000) studied five of them, pointing

out that there is as yet no consensus on how we should calculate and use those

measures.

SIMLIN
† computes a cutoff value that minimises the number of misclassifications,

as recommended by many authors (e.g. Ryan, 1997). This seems quite reasonable
since the costs of each type of misclassification are approximately equal. Sometimes

the measure is called maximum correct classification rate (MCCR).

The classification table reports MCCR, sensitivity, specificity, false positive and

false negative rates. The statistical significance of these rates can be assessed by using

Huberty’s procedure (Sharma, 1996). For example, suppose we are to test how good

is the MCCR, i.e. whether MCCR is significantly greater than that due to chance.

Let m be the total number of observations, O be the total number of correct

classifications and E�/(m1
2�/m2

2)/m be the expected number of correct classifications
due to chance, where mi is the number of observations in group i (i�/1, 2). Then, the

statistic

Z��
(O � E)

ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(m � E)

p ; (5)

follows an approximately standard normal distribution.
We also need external validity, i.e. examination of the accuracy with which the

logistic function can classify observations from another sample. For such purpose,

one may use the Jackknife method (see e.g. Shao and Tu, 1995), that leaves out one

observation at a time, estimates the model with the remaining observations, and

classifies the left-out observation. Since it is necessary to run as many logistic
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regressions as there are observations, which is computationally quite cumbersome,

SIMLIN
† uses an approximate and efficient procedure for obtaining one-step pseudo-

Jackknife estimates of bi (see SAS, 1990). Then, pi and classification rates are

computed accordingly.

Finally, the effect of an individual observation on the estimated parameter of the

fitted model can be assessed, detecting whether it causes instability in that estimate.

For each observation i and each parameter bj , the Dfbeta diagnostic is the
standardised difference between bj; computed with observation i , and b

(i)
j ; computed

without observation i . Instead of re-estimating the parameter every time an

observation is deleted, the implemented procedure uses a one-step estimate to

approximate b
(i)
j from bj (see SAS, 1990). If such an influential observation is

detected, the expert user may delete it and the procedure will be reinitiated.

4. Simulation of a grading line

The logistic regression model provides an estimation of fruit bruising probability

(p) as a function of variables xi , one of which refers to the impact intensity recorded

at a generic point of the line. Let g( �/) be this function, i.e. p�/g (x1, x2, . . ., xn ), where

x1 is assumed to be the impact intensity.

We then construct the simulation model of fruit moving along the grading line.

The flowchart (Fig. 1) shows the algorithm to be repeated until the number of

required outputs are yielded.

We start by generating values to characterise the fruit (variables x2, . . ., xn , see
Section 3) according to their distributions. For example, when these distributions are

normal, the efficient polar generation method is used (Law and Kelton, 1991). These

values characterise the fruit and once they are introduced into g ( �/), they provide

bruise probability as a function of x1. Fruit characterisation is kept constant along

the grading line, i.e. we consider that the intrinsic characteristics of a fruit are not

affected as it moves along the line.

At this stage, we virtually place the fruit at the starting point of the line. For the

first transfer point, we simulate an impact x1 from the discrete distributions
previously yielded by the electronic fruits (see Section 2) using the inverse-transform

method (Law and Kelton, 1991). Since we actually simulate an impact category from

the database, its middle point is then entered into the logistic model for damage

prediction. This process leads to a bruise probability p ? when substituting the

generated x1 in function g( �/). Finally, we determine whether or not the fruit is

damaged at the transfer point in question by generating a value from a Bernoulli

distribution of parameter p ?. If the fruit is not damaged, it passes to the next transfer

point of the line and the previous steps for impact and damage generation are
repeated until the fruit reaches the end of the line. Whenever any transfer point

damages the fruit, the item is removed from the simulation, since the goal is to

compute the percentage of the total amount of handled fruit that is bruised and not

the number of bruises per fruit. The removal of a fruit from simulation does not

affect damage occurrence for other items. Fruit to fruit impacts are taken into

C. Bielza et al. / Computers and Electronics in Agriculture 39 (2003) 95�/113 103



account in the impact intensities recorded by the electronic fruits, obtained under

real conditions. When a fruit is removed from simulation, the entire process is

repeated for a new fruit entering the grading line, after increasing the total number of

damaged fruit by one unit. By this means, the transfer point’s contribution to

damage at that specific location is assessed. This additional information is only

acquired with the simulation of the whole grading line, and not with each transfer

point separately.

The final bruise probability for that line is approximated by d /N , where d is the

number of damaged fruit in N repetitions of this process. Furthermore, the

simulation algorithm can compute how much information must be collected in

order to get a proper representation of the real system. Thus, the number N of fruit

to be simulated is not entered as an input; it is calculated by the SIMLIN
† program

itself after having set the required precision for the simulation output. This precision

is given by a confidence interval, defined by its width and confidence level. See Ross

(1990) (p. 97) for further details.

Fig. 1. Simulation of a grading line. Index i records each piece of fruit (i�/1, . . ., N ) and index j records

each transfer point (from 1 to the total number T of transfer points in the grading line).
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5. A real example: Sudanell peaches

The following example is based on a variety of peaches called Sudanell. The input

file has a row for each of 360 fruit, each row recording the following characteristics:

Impact Intensity (g �/m/s2), Fruit Deformability Modulus (N /mm), Rheological

Behaviour (mm�1), Skin Resistance (N), Deformation at Skin Puncture (mm),

Stress Relaxation (dimensionless), and Magness�/Taylor Resistance of the Flesh (N).

As mentioned in Section 2, the precision of measurement lies between 6 and 10% of

the average. The limit for model prediction depends on the quality of those data

coming from independent variables and references. Up to now, this limitation is far

more important than the computing precision. This data set was derived from

experiments carried out at LPF (Technical University of Madrid) and the Applied

Edaphology and Biology Research Centre (Murcia, Spain), under the National

Project PTR 94-0082: technology transfer of harvest and post-harvest techniques in

Cooperatives of the Murcia region. A factorial design was applied to several pre-

cooling treatments as well as various post-harvest ripeness states of the fruit to

generate as wide range of inherent susceptibility conditions to bruising as possible

(Garcı́a and Ruiz-Altisent, 1997). There were no missing data.

SIMLIN
† calculated that, for a p -value of 0.01 in the backward model selection

procedure, this variety is described by a logistic regression model with three

variables. Table 1 shows the main information. The deviance was 223 for this final

model, compared with a deviance of 469 for a model with only one parameter

(intercept).
Note the power of this model that has only three terms out of seven potential

additive terms and
7
2

� �
/�/21 interaction terms in the initial model (whenever there is

no multicollinearity, which is checked initially by the program). This simplicity

represented by parsimony of parameters is a desirable feature of any model. With a

p -value equal to 0.05, skin resistance (N) and deformation at skin puncture (mm)

also enter the model. With p�/0.1, there are obviously more variables in the model,

even interaction terms. The experts from LPF agreed with the first model due to its

simple interpretability, so its predictive ability is evaluated here.

Logistic regression output also includes the estimated probability for each fruit to

be bruised, together with 95% confidence intervals for probabilities pi . For reasons

Table 1

Logistic regression output (part I): maximum likelihood estimates bi of the parameters, estimated standard

error of the parameter estimate and t -value

Term i /bi Standard error t -value

Intercept �/13.56 2.07 �/6.54

Impact intensity 0.04 0.007 6.04

Stress relaxation 0.67 0.09 7.65

Magness�/Taylor resistance �/0.15 0.04 �/3.99
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of space, take, as an example, observations 1 and 67 and see the corresponding rows

in Table 2. Values for the three variables in the model are also provided.

Graphics of Dfbeta diagnostics for the three parameter estimates revealed that

there was not any influential observation (all Dfbetas were less than 0.4 in absolute
value).

The classification table (see Table 3) was built with a cutoff value of 0.35. Also,

MCCR�/84.4%; sensitivity�/84.3% and specificity�/84.5%, which are good results.

Huberty’s procedure gave Z*�/11.52, which is statistically significant at an alpha

value of 0.05. That is, the MCCR of 84.4% is significantly higher than that expected

by chance alone (54.2%).

Having evaluated the model for this species, we must fix the specific state of the

fruit entering the line. A Sudanell peach is different at the beginning of the season
from at the end, but it also depends on the harvest and post-harvest treatments.

Thus, this characterisation is carried out by telling the program which parameters

define the probability distribution of x2, . . ., xn we are going to generate from. Note

that the technique used by Bollen and Cox (1991) and Bollen (1993) is far less

flexible, since it has to adjust the coefficients of the logistic regression model

separately for each fruit characterisation and each impact surface.

In this example, the hypothesis of a normal distribution for Stress Relaxation

cannot be rejected by usual goodness-of-fit tests. We decided to set the sample values
mST�/14.7 and sST�/4 (dimensionless), since they are the maximum likelihood

estimators for this distribution. Magness�/Taylor Resistance behaved in a similar

manner, with sample values mMT�/11.3 and sMT�/6.1 (N). In the next section we

will perform some experiments changing the state of the fruit demonstrating more

Table 2

Logistic regression output (part II): values for Impact intensity, Stress relaxation and Magness�/Taylor

resistance for each fruit, estimated probability for each fruit and 95% confidence intervals (CI) for

probabilities pi

Observation y Impact Intensity Stress Relaxation Magness�/Taylor Resistance /p 95% CI for p

1 0 160.4 8.3 13 0.03 (0.01, 0.08)

/n /n /n /n /n /n /n
67 1 75.8 21.2 9 0.92 (0.83, 0.96)

/n /n /n /n /n /n /n

Table 3

Classification table: number of fruit correctly and incorrectly classified into groups of damaged and

undamaged fruit

Observed Predicted

Damaged Not damaged

Damaged 108 20

Not damaged 36 196
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extreme cases. Note that m and s refer to the average and standard deviation of the

population to be simulated, respectively.
Next, we have to specify the grading line we are going to work with. Here we will

work with a real design comprising the following elements in the indicated order:

twist chain dumper (E1), conveyor belt (E2), sorting table (E3), vacuum generator,

to remove the peach fuzz (E4), conveyor belt (E5), electronic sizer (E6), conveyor

belt (E7), and packaging area (E8). These eight elements have seven transfer points.

The line has to be validated by the program according to constraints supplied by

experts, e.g. the sizer must precede the packaging area. This ensures that the line

introduced by the user is well-defined. Otherwise, the posterior steps would be

invalid. SIMLIN
† includes a database generated on real commercial lines by means of

electronic fruits, IS-100 type, within the scope of the above mentioned National

Project (Garcı́a et al., 1996). From this database, SIMLIN
† extracts the seven

probability distributions of impact intensity at each transfer point (see Table 4). The

transfer point at row i (i�/1, . . ., 7) is that from Ei to E(i�/1).

We set a precision for the simulation output defined by a confidence interval with

a high confidence level (99%) and a short width (0.01). From this precision, SIMLIN
†

computes the number N of fruit to be simulated. In this example, N�/51 833.

A wide variety of outputs can be obtained using SIMLIN
†. One of them shows the

total number of damaged fruit, 34 940 fruits (67.4%). Though extremely high, this

fact has been repeatedly observed in the five cooperatives tested within the

mentioned National Project.

The program plots the number of fruit processed at each transfer point and how

many were damaged. The number of fruit processed is decreasing along the line

because the fruit is removed from the simulation whenever any transfer point

damages it, see Section 4. For that reason, it is important to plot the percentage of

damaged fruit at each transfer point with respect to the total number of damaged

fruit in the line, and also, with respect to the total number of processed fruit at that

transfer point. The information given by the latter plot is summarised in Table 5.

The first transfer point (E1�/E2) is the most critical point along the line. This

connection between the dumper and a conveyor belt would have damaged 58% of

the fruit processed there. The sixth transfer point between the electronic sizer (E6)

and a conveyor belt (E7) would have damaged 14.6%. By comparison, the remaining

Table 4

Impact distributions at each transfer point

Transfer point Impact5/50g 50�/100g 100�/150g 150�/200g

1 0.27 0.21 0.35 0.17

2 0.86 0.14 0 0

3 0.37 0.63 0 0

4 0.85 0.15 0 0

5 0.87 0.13 0 0

6 0.2 0.47 0.16 0.17

7 0.82 0.14 0.04 0
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transfer points would hardly damage any fruit. This demonstrates the need to

substitute the twist chain dumper for another design, and to replace the conveyor

belt (E7) by a less aggressive one, such as coated rollers. Section 6 deals with these

possibilities.

In addition, the number of damaged fruit for different levels of each xi in the

model are recorded. It is then possible to determine which type of intrinsic

characteristics of the fruit enhances bruising. Fig. 2 shows the influence of Stress

Relaxation on damage occurrence along the line. For example, it can be seen that

most simulated fruit had values less than 19 (see the left-hand bars at each interval).

The interval (13.8, 17), represented in Fig. 2 by its middle point 15.4, indicates that

29.9% of the simulated fruits were generated within that interval and 24% of them

were damaged (see the third white bar from the left). At the next three intervals of

higher Stress Relaxation, almost all the fruits were damaged. Therefore, a fruit

within these values of Stress Relaxation is the most sensitive to damage.

Table 5

Percentage of damaged fruit at each transfer point, with respect to the total number of fruit processed at

that point

Transfer point Damaged fruit (%)

1 58

2 1.7

3 3.7

4 1.2

5 1.1

6 14.6

7 1.5

Fig. 2. Percentage of simulated (shown in black) and damaged (in white) fruit for different values of

variable Stress Relaxation (in X axis).
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There is an analogous plot for the other characteristic, Magness�/Taylor

Resistance.

The next section is devoted to the improvement of the line to achieve bruise levels

within the EU limits (at most, 10% of damaged fruit).

6. Searching for optimal operating conditions in fruit grading lines

The high percentage of damaged fruit (67.4%) obtained with the grading line
described in Section 5, shows that there can be a need for significant improvement.

Dumping is one of the most dangerous transfer points in almost every line. In our

example, it has damaged 58% of the fruit. Thus, we start by changing the twist chain

dumper to a less aggressive one, a box dumper. This new grading line will be referred

as line-2, while the initial line will be called line-1.

Using the same precision as in the previous section (a width of 0.01 for the 99%

confidence interval), this line yields 29 231 damaged fruits over a total of N�/56 785

fruits, i.e. 51.5%.
The number of damaged fruit at the new first transfer point (now, referred as to 1?)

has decreased from 58 to 48.9%, but it remains a critical point in the line together

with the sixth transfer point, the electronic sizer�/conveyor belt. Thus, we design

from line-2 a third line (line-3) substituting at the sixth transfer point the conveyor

belt for coated rollers, to decrease the number of damaged fruit. This new transfer

point is referred as to 6?. Table 6 shows the probability distributions of impact

intensity at transfer points 1? and 6?, which substitute 1 and 6, respectively in Table 4.

The final configuration achieved with line-3 corresponds to some of the latest
technical designs and, therefore, it could be seen as near the actual limit for lowest

machinery aggressiveness. Nonetheless, in this line the percentage of damaged fruit is

42.3% (26 704 over N�/63 174 fruits). Note that this value greatly exceeds the EU

tolerance level (10% of damaged fruit). The first transfer point still records 25.7% of

damaged fruit while it is 2.8% at the sixth transfer point. We then conclude that due

to the properties of the fruit used in the simulation it is impossible to attain the EU

tolerance level.

The solution is to select new states of fruit for simulation, using the logistic model
as a sensitivity tool. Predicted bruise probability of the fruit to be handled should not

exceed 0.1 for 25g (minimum impact load to be generated during simulation, see

Section 4) when the EU tolerance level is to be attained for a grading line. This is a

Table 6

Impact distributions at new transfer points

Transfer point Impact5/50g 50�/100g 100�/150g 150�/200g

1? 0.77 0.12 0.11 0

6? 0.79 0.21 0 0

Transfer points 1? and 6?, which substitute 1 and 6 respectively in Table 4.
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necessary condition although it is not sufficient. To find optimal properties of the

fruit for simulation, values for Magness�/Taylor Resistance and Stress Relaxation

may be varied within the logistic model, testing the effect on final bruise probability

at each impact intensity (25g , 75g , 125g , 175g ).

Thus, bruise probability may be decreased by increasing the mean (mMT) of

Magness�/Taylor Resistance distribution, since its parameter estimate in the logistic

model is negative. However, we should decrease the mean (mRS) of the Stress

Relaxation distribution to decrease bruise probability, since the coefficient in the

logistic regression for this variable is positive. After several trials, mMT�/20 N and

mRS�/14 (dimensionless) were selected for new simulations. These values correspond

to a harder consistency of fruit than that of the sample values, achieved by

harvesting earlier in the season, yet within a high organoleptic range (Alavoine et al.,

1981). Selecting even harder consistencies of fruit (for example mMT�/40 N) is not

advisable because it could be far from consumer acceptance.

In addition to specifying the average conditions of the fruit state parameters, it is

necessary to define the degree of dispersion for both Magness�/Taylor Resistance

and Stress Relaxation. To illustrate this, we use two characterisations of the fruit: (1)

homogeneous fruit (with little dispersion), i.e. sMT�/3 N and sRS�/1 (dimension-

less); and (2) heterogeneous fruit (more dispersion), with sMT�/6 N and sRS�/4

(dimensionless). Recall that we will use the mean values mentioned above: mMT�/20

N and mRS�/14 (dimensionless). Therefore, it amounts to having six new

experiments, since we have two types of fruit and three different grading lines.

Fig. 3 shows the simulation results for both groups in the three lines. It shows the

percentage of damaged fruit from simulation and the associated 99% confidence

interval (width of 0.01) in X -axis, as well as the number N of fruit simulated at each

case to obtain the required precision.
As far as the two kinds of fruit are concerned; as expected the homogeneous fruit

yields better results in all grading line designs than the heterogeneous group.

As regards the lines, there is little difference between homogeneous and

heterogeneous fruit within line-1, due to the high percentage of damaged fruit at

the first point (transfer between dumper and a conveyor belt). The difference in

damaged fruit is less than 3%. Substituting the dumper and thereby obtaining line-2,

this difference increases. Furthermore, there is a significant reduction in the

percentage of damaged fruit for both groups, but it is not sufficient to reach the

EU tolerance level.

When handling fruit in line-3, which has coated rollers instead of the conveyor belt

of line-2, the difference between homogeneous and heterogeneous fruit is even more

marked. A comparison of line-2 and line-3 shows that the results for line-2 with the

homogeneous group are approximately the same as for line-3 using the hetero-

geneous one. More interestingly, in line-3 homogeneous fruit reaches damages below

10%, obtaining an important reduction of the percentage of damaged fruit at each

transfer point. For example, the first transfer point damaged 4.1% of the fruit

processed there. The remaining transfer points had percentages of damaged fruit

between 0.5 and 1.5%.
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Then, it is only possible to reach the EU tolerance level for damages when (1)

handling homogeneous fruit (within consumer acceptance range), and (2) on line-3.

7. Conclusions

The current prediction and simulation models can be used to describe the flow of

fruits along the grading line, evaluating whether or not there is a significant impact

at each transfer point. Furthermore, it is possible to estimate the percentage of
damaged fruit at the end of the line as a function of its intrinsic susceptibility. The

accumulation of data for a large number of fruit makes it possible to draw

conclusions on line operation for any design as a function of the characteristics of

the handled fruit, provided the establishment of a desired confidence level has been

stated for the simulated data.

The final conclusion of our experiments is that we are able to address the design

improvements in the line as well as the optimal operating conditions of fruit for the

improved line. The use of SIMLIN
† to cut quality losses in fruit due to mechanical

damage is helpful to meet EU standards for damages.

Moreover, SIMLIN
† is a flexible tool. Any new data set can be readily

incorporated. New line elements for the grading line can be defined. Impact

probabilities for various intensity ranges can be modified. Impact Intensity

distribution may be used as continuous, once its corresponding simulation method

Fig. 3. Percentage of bruised peaches from simulation and the associated 95% confidence interval. The

number N of fruit simulated at each case to obtain the required precision is shown.
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is implemented. Probability distributions that characterise the intrinsic susceptibility

of the fruit can also be varied.
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