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Abstract

The multidimensional classification of multivariate time
series deals with the assignment of multiple classes to
time-ordered data described by a set of feature variables.
Although this challenging task has received almost no
attention in the literature, it is present in a wide variety
of domains, such as medicine, finance or industry. The
complexity of this problem lies in two nontrivial tasks,
the learning with multivariate time series in continuous
time and the simultaneous classification of multiple class
variables that may show dependencies between them.
These can be addressed with different strategies, but
most of them may involve a difficult preprocessing of the
data, high space and classification complexity or ignor-
ing useful interclass dependencies. Additionally, no at-
tention has been given to the development of new
multidimensional classifiers of time series based on
probabilistic graphical models, even though transparent
models can facilitate further understanding of the do-
main. In this paper, a novel probabilistic graphical model
is proposed, which is able to classify a discrete multi-
variate temporal sequence into multiple class variables
while modeling their dependencies. This model extends
continuous time Bayesian networks to the multi-
dimensional classification problem, which are able to
explicitly represent the behavior of time series that

reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. International Journal of Intelligent Systems published by Wiley Periodicals LLC

Int J Intell Syst. 2021;36:7839-7866.

wileyonlinelibrary.com/journal/int 7839

85UB017 SUOWILIOD BAITER1D) 3|edt(dde au) Aq pauienob ale SSp1Le WO ‘88N J0 S8 1o} AXeiq1T8UIIUO /3|1 UO (SUORIPUOO-PUE-SWR}W00" A3 | 1 AReIq 1 jeul Uo//:SAL) SUORIPUD pue SWLB | 841 88S *[220z/0T/LT] Uo Ariqiauljuo A8 |IM ‘8 Boluosliiod pepseAIuN Ag TT9ZZ UI/Z00T OT/I0p/LI0d A8 1M ARiqpuluo//Sdny woij pepeojumoq ‘2T ‘T20Z ‘XTTT860T|


https://orcid.org/0000-0001-9333-8569
https://orcid.org/0000-0003-0652-9872
https://orcid.org/0000-0001-7109-2668
mailto:carlos.villa@upm.es
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fint.22611&domain=pdf&date_stamp=2021-09-03

7840 VILLA-BLANCO ET AL.
WILEY

evolve over continuous time. Different methods for the
learning of the parameters and structure of the model
are presented, and numerical experiments on synthetic
and real-world data show encouraging results in terms
of performance and learning time with respect to in-
dependent classifiers, the current alternative approach
under the continuous time Bayesian network paradigm.

KEYWORDS

Bayesian network classifiers, learning from data,
multidimensional classification, multivariate time series,
probabilistic graphical models

1 | INTRODUCTION

Many classification problems imply the analysis of trends or dynamics that occur in sequences
of time-ordered data to perform accurate predictions. Typical examples are found in finance,
medicine, signal processing or industry, but more applications are emerging in virtually any
domain."* This article focuses on the complex scenario of multidimensional classification over
multivariate time series, presenting a novel model for the task and a real-world problem where
it is applied.

The multidimensional classification problem deals with the simultaneous classification of
multiple class variables, that is, it requires the definition of a mapping function that determines
the output of several multiclass class variables based on a given input data. This learning
problem is included in the more general multioutput paradigm, which also covers supervised
learning problems with outputs of different data types, such as real-valued or ordinal. The
reader is referred to the comprehensive review of Xu et al.” for a more in-depth reading about
the multioutput learning paradigm.

Traditional classification algorithms are limited to the prediction of a unique variable, so
they cannot be directly applied in the studied multidimensional context. Two simple ap-
proaches are commonly used to avoid this limitation: the definition of a compound class
variable that collects all combinations of class values (label powerset method) and the learning
of independent classifiers for each class variable (binary relevance method). Nonetheless, both
solutions involve a number of drawbacks, being a common inconvenience the impossibility of
modeling the dependencies between class variables. This independence assumption can be
avoided with methods such as chain classifiers,® which iteratively train a set of classifiers (one
per class variable), whose feature spaces are extended with the ground-truth classes of their
predecessors. However, this approach is really dependent on the order in which classifiers are
applied, requiring to explore an intractable number of chain orders to find a suitable one. The
performance of all these solutions could be improved by considering them along with frame-
works such as that from Jia and Zhang,” which enriches our original data by extracting new
features that encode information about the class variables.

The above methods transform the multidimensional problem into one or more one-
dimensional classifications. Rather, we will study the adaption of existing algorithms, which
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tackle the problem more directly without requiring this preprocessing. Learning algorithms
such as decision trees,® support vector machines,’ k-nearest neighbors,‘0 or Bayesian networks
classifiers'' have already been extended to perform simultaneous classification of multiple class
variables. However, some of these proposals focus on the multilabel classification subproblem,
where all class variables are binary.'”

Apart from the multidimensional facet, the data studied in this article present a temporal
dimension that cannot be ignored. To apply most of the above models over temporal data, it is
common to follow a similar preprocessing strategy to that for static multidimensional data,
called feature-based approach.”” It transforms our original data set by extracting new feature
variables that summarize the dynamics of time series during a time window. In this way, any
traditional static classifier can be applied. Nonetheless, this implies the costly extraction of a
probable large number of variables, which, in the end, may lose significant information. The
adaptation of multidimensional classifiers to temporal data has not been extensively studied
and few models can be directly applied in this context. Some of these algorithms include the
multilabel k-nearest neighbors with dynamic time warping'”'* and the long-short term
memory recurrent neural networks.'”'® Of these, the method of multilabel k-nearest neighbors
stands out due to its simplicity and great performance.'’ Nonetheless, since it is a lazy classifier,
it may imply a high space and classification complexity.

To the best of our knowledge, the direct application of probabilistic graphical models to the
multidimensional classification of time series has received no attention, although they provide
interesting characteristics such as an intuitive representation of variable dependencies.
Dynamic Bayesian networks'®'® are widely studied in the literature, but they only model
discrete time, later extended to continuous time Bayesian networks.”’ For one-dimensional
classification, the continuous time Bayesian network classifiers were introduced by Stella and
Amer.”! Here we extend them to the multidimensional problem, as well as different methods
for its learning from data. We believe this is the first probabilistic graphical model able to
perform time series multidimensional classification while explicitly modeling continuous time.
More specifically, the main contributions of this study are the following:

« A novel multidimensional continuous time Bayesian network classifier that is able to model
discrete state multivariate time series data and classify it into multiple class variables. This
proposal explicitly represents the temporal dynamics of feature variables in continuous time
and seeks to improve its predictions by modeling the dependencies between class variables.

« The introduction of algorithms for the learning of the parameters and structure of the
presented model from data, as well as different structure constraints to adapt the model and
its learning to the characteristics and demands of a certain problem.

« A comprehensive comparative study with 50 synthetic and a real-world Industry 4.0 data sets
to validate, under different conditions, the proposed model's effectiveness and its perfor-
mance improvements with respect to continuous time Bayesian network classifiers using the
binary relevance strategy.

» The development of a software tool to allow the application of the presented model in other
studies and the sampling of synthetic discrete state multivariate time series data sets with
multiple class variables.

The remainder of this article is organized as follows. Section 2 reviews some fundamental
concepts on which the presented model is based. Section 3 introduces the multidimensional
continuous time Bayesian network classifier, while Sections 4 and 5 explain some methods to
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TABLE 1 List of acronyms
Acronym Meaning
BDe Bayesian Dirichlet equivalent
BIC Bayesian information criterion
BN Bayesian network
CLL Conditional log-likelihood
CTBN Continuous time Bayesian network
CTBNC Continuous time Bayesian network classifier
CTNBC Continuous time naive Bayes classifier
DAG Directed acyclic graph
LL Log-likelihood
MBC Multidimensional Bayesian network classifier
Multi-CTBNC Multidimensional continuous time Bayesian network classifier

learn its parameters and structure from data, respectively. Subsequently, Section 6 describes
how the model performs multidimensional classification of unseen sequences. Section 7 pre-
sents synthetic and real-world experiments, and discusses the results that the proposed model
obtains. Finally, Section 8 concludes the article and highlights future lines of research. For the
sake of clarity, Table 1 provides the list of acronyms used in this study.

2 | FUNDAMENTALS

A Bayesian network (BN) is a probabilistic graphical model that encodes conditional independence
assumptions over some random variables to obtain a factorized version of their joint probability
distribution. These models have been widely used in a variety of domains** ** and their learning
from data with different algorithms constitutes an important active research area. Some reasons for
their success are the graphical representation of uncertainty, from which we could even learn causal
relationships under certain conditions, that they can handle incomplete data, which are common in
real-world problems, or that they can combine expert and data-extracted knowledge.”*”’

Definition 1 (Bayesian network). A BN B = (G, B) over a set of random variables
X =1{X, ..., Xy} consists of a directed acyclic graph (DAG) G encoding conditional
independence assumptions among the variables and a set of parameters B defining the
statistical dependencies between them. This allows to factorize the joint probability
distribution over X as

n
p(Xi, -, X,lG, B) = [ ] p(XilPa(x), BE ™),

i=1
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where Pa(X;) are the parent variables of X; in G, that is, variables pointing at X; in G, and
Bf(‘i‘(x") represents the conditional probability (discrete or continuous) distribution of X;
given Pa(X;).

The classical definition of a BN is limited to model static data, that is, samples that are assumed
to be independent from each other, which is an inconvenience when data is dynamic. This article
considers dynamic data with a temporal dimension, which is commonly known as time series data.

Definition 2 (Time series data set). A multivariate time series data set D = {Sj, ..., Sy}
consists of multiple multivariate temporal sequences or trajectories S = {XJ, ..., xfT’}
(I=1,.. N)* which are time-ordered sets of T, observations X? = {xltl", ...,xltrfn} (T -1
transitions) over some variables X = {X], ..., X;,,}. Each transition is represented by two pairs
x|/ and x;/*!, where tj, tj+1 € Ry and ¢; < tj,1, such that variables have value x| from time £
to ;1 and value x/** from fj+1 to tj4p, where j + 2 < T,.

Dynamic Bayesian networks are the best known extension of BNs to model temporal data
and they have been successfully used in real-world problems.”* *’ Nonetheless, they are based
on discretizing time, forcing us to define a uniform time granularity even when the described
processes evolve at different rates. Continuous time Bayesian networks (CTBNs)”’ avoid this
problem by describing the dynamics of each variable as a finite-state, continuous-time,
homogeneous Markov process. Therefore, CTBNs can explicitly represent time, while still
keeping the interesting graphical properties of BNs.

Definition 3 (Continuous time Bayesian network). A CTBN A = (G, Q, PY) over a set of
discrete random variables X = {X, ..., X;;}, where each variable X; has a sample space
Qx = {x, ..., i}, consists of:

« A continuous transition model specified by a directed graph G and a conditional
intensity matrix (CIM) Qf(?(}(f) for each X; that describes its temporal dependencies. A
CIM can be seen as a set of intensity matrices Qé’(?(xi), each encoding the dynamics of X;

given an instantiation pa(X;) of its parents Pa(X;) in G:

_ g Pa(X) pa(X) . pa(X;)

qx1 qX1,X2 qxl,xk
pa(X) _ 4 pa(X) pa(X;)

Q%a &) — Do 9, D,
pa(Xy) pa(Xy) .. pa(X)

qu,xl qu,X2 qu,xk

where g )ga(X" = D i 4 )f;‘jc(X") is the intensity of X; leaving state x; and q)g;iX") is

proportional to the probability of X; transitioning from state x; to x,, both when its
parents have value pa(X;). CTBNSs use this continuous transition model to define two
distributions for each variable. An exponential distribution over the time a variable
remains in a certain state and a multinomial distribution over which state a variable
will transition to when its current state is known to change.

« An initial distribution PY, specified as a BN, that represents the initial state of a temporal
process.
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Unlike a BN, the graph G of a CTBN can be cyclic since its arcs represent the dependencies
between variables across time, that is, the state to which a variable will transition depends on the
current state of other variables.

As with BNs, the interest in CTBNS is not solely motivated by knowledge discovery, but they
can also be applied to the classification of unseen sequences.

Definition 4 (Time series classification). This task consists on training a classification
model with a (multivariate) time series data set, whose sequences S; = {X?, ...,XET’, ¢}
describe the transitions of m, time dependent, feature variables X and have assigned a
unique state c; for a, time independent, class variable C. The objective is to use the model
to predict the state of C on a previously unseen sequence S, = {Xf},, v xg"}, where class
variable information is missing, by analyzing the state transitions of the feature variables.

The family of classification models known as continuous time Bayesian network classifiers
(CTBNCs)”" are able to perform classification over the data introduced in Definition 4 by
incorporating a new, time independent, class variable node to the CTBNs.

Definition 5 (Continuous time Bayesian network classifier). A CTBNC is a pair
C ={N, P(C)}, where N\ is a CTBN over a set of feature variables X = {X, ..., X;,} and a
time independent class variable C, with sample space Q¢ = {cy, ..., ¢}, that is fully
specified by the marginal probability P(C). The CTBNC graph has the same properties of
that of a CTBN, but includes a class variable node with no parents, that is, Pa(C) = @.

3 | MULTIDIMENSIONAL CONTINUOUS TIME
BAYESIAN NETWORK CLASSIFIER

The existence of multidimensional classification data provoked the appearance of multidimensional
Bayesian network classifiers (MBCs),'' but in static settings. However, there are real-world problems
where we need to classify temporal sequences into multiple class variables, that is, a sequence
S = {x, ..., X;T’, ¢} now includes the state of d class variables ¢; = {cyy, ..., ¢jq}. Take as an example
the problem presented in Section 7.1.2, which requires to identify the power consumption
state (discretized as high, low or inactive) of elements of an industrial machine based on the energy
data it produces. Surely, several individual models (one per element) can be used to predict each of
them. However, this would not identify inter-element dependencies, which could provide valuable,
or even crucial, information to classify certain class variables. For example, it is known that some
elements always work together, while others cannot be active at the same time. The multi-
dimensional continuous time Bayesian network classifier (Multi-CTBNC) that we introduce here
seeks to extend CTBNCs to this more complex scenario, allowing to model the interclass interactions
by capturing the probabilistic relationships of class variables with a BN.

Definition 6 (Multidimensional continuous time Bayesian network classifier). A Multi-
CTBNC M = (G, B, Q, P)) over a set of discrete variables V = {Xi, ..., X;s, Cl, ..., Cg} is
formed by:

« A directed (possibly cyclic) graph G = (V, . A), where vertices )V are partitioned
into those for feature variables Vy = {Xi, ..., X,,}, m > 1, and for class variables
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FIGURE 1 A Multi-CTBNC graph (A) and its class (B), bridge (C), and feature (D) subgraphs. CTBNC,

continuous time Bayesian network classifier

Ve ={Cy, ..., Cq},d > 1, and arcs A = {A¢, Ay, Acy} are divided into those between
class variables A¢ C )V, X ), feature variables Ay C Vy X Vy and from class to feature

variables Acy C Ve X Vy.

« Class variable parameters B, which form conditional probability tables (CPTs).

« A set of CIMs Q, one for each feature variable X;.

« An initial distribution P{) to represent the initial state of a sequence. As more than one

class variable is present, P is specified as an MBC.

As the class variables do not depend on time, a Multi-CTBNC is based on capturing their
probabilistic relationships with BNs. Thus, this model can be decomposed into a BN and a

CTBN, which divide G into three subgraphs:

1. The class subgraph Ge = (Vg, Ac): is defined by a BN that models the dependencies between

class variables. This subgraph must be a DAG.

2. The feature subgraph Gy = (Vy, Ay): is defined by a CTBN that models the dependencies
between feature variables over time and, therefore, cycles may appear.

3. The bridge subgraph Gey = (V, Acy): represents the dependencies of features on class
variables and, therefore, it is defined by the same CTBN as the feature subgraph. It is also
known as feature selection subgraph'' since it specifies which feature variables are relevant

for classification.

Figure 1 shows a Multi-CTBNC graph and its constituent subgraphs. Note that the structure
of this model shares many similarities with that of an MBC, despite the multiple differences in
their underlying paradigms, but the Multi-CTBNC allows the appearance of cycles in its feature

subgraph.
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4 | PARAMETER LEARNING

The parameters of a Multi-CTBNC are those of a BN and a CTBN. As we are assuming all variables to
be discrete, Multi-CTBNC nodes would contain either CPTs (for class variables) with parameters:

. Bf_’a(cy): probability of class variable C, taking state ¢; given the parents’ state pa(C,). These
7
are the parameters for the multinomial distribution over class variables' state;

or CIMs (for feature variables), which are summarized by two types of parameters:
. q}f’_“(Xf): intensity of feature variable Xy leaving state x; when the parents’ state is pa (Xy). This
)

is the parameter for the exponential distribution over the time a feature variable remains in a
certain state.

pa(Xy)
X) _ 4
. e;;j%}z 7 — Zax&j) probability of X; transitioning from state x; to x,, where x; # x,, when a

%)
transition is known to occur and the parents’ state is pa (Xy). These are the parameters for the

multinomial distribution over which state a feature variable will transition to.

Therefore, the parameters for each class variable, BPa(Cy) {,8 pa(Gy) . ¢j € Qc,}, and each

feature variable, q; Pal) — {q P x; € Q x;} and G)Pa(Xf) {e,gifxf ), Xj, X; € Qx;, X # X}, de-

fine the parameters B = {BPa(C) Cy € Vehq = {qx, Pa(Xp) :Xr € Wy}and © = {G)Pa(Xf) X € Wy}

of a Multi-CTBNC. To estimate these parameters, some sufficient statistics that summarize all
observable data are recorded:

. ch“(cl’: number of sequences where class variable C; takes state ¢; while the parents’ state is
pa(Cy).

o NPaC) = 2 N p“(c). number of sequences where parents of C; have state pa(C;)
1ndependent1y of the state of C;.

« Mg p“(X ): number of transitions of feature variable X; from state X to x; when the parents’ state
is pa (X ).

. M)g;”(xi) = D My P"(X ): number of transitions of X; from state x; to any other when
the parents' state 1s pa (X5).

o T )sa(X,-): time of X; spent in state x; when the parents’ state is pa(X;).

Given the structure of a Multi-CTBNC, its parameters can be estimated with methods like
maximum likelihood estimation or Bayesian estimation. The first approach assumes that the
parameters are constants, seeking those values that maximize the probability of the observable data,
that is, the maximum likelihood estimates. Parameters are then estimated as follows:*"**

(@) X)) X))
s pac) _ NG o) = M* 4 g _ Mo
g = Nm@ 9% Tpacy > A ke = rpa()”
Xj Xj

In the case of the Bayesian estimation, the parameters are considered random variables and
a prior distribution is defined over them. This is a more interesting approach since we can add
prior expert knowledge and avoid the zero-count problem.’” Conjugate prior distributions are
defined for the two types of distributions used by the Multi-CTBNC, the multinomial and
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exponential distributions. The most common prior distribution for the multinomial parameters
is the Dirichlet distribution,”* while for the exponential parameter, the Gamma distribution is
an appropriate choice.”” As conjugate priors are used, the posterior distribution of the para-
meters given the observed data follows the same distribution and, therefore, it can be obtained
analytically. Then, the parameters can be estimated using, for example, their expected values,
in the same way as the maximum likelihood estimation, but including the hyperparameters of
the Dirichlet prior distributions 1/ (@ and a)f;ﬁc(zxf), and of the Gamma prior distribution o X
and 135“(’(1'):31‘32

pa(Cy) pa(Cy) pa(Xi) pa(X;)
g palC) _ Ny + lcj 5 pa(X) — M t Ay

Y Npa©) 4y e Ty TP} £pati) *
Z z J 7

and

a(X;) a(X;)
2 pacxy | METY + afin

XjpXe T M)g’a()(i) + a}ga(Xi)'
G j

These hyperparameters can be seen as imaginary counts of the sufficient statistics that occur
before any data is observed, that is, Acf,’“(c“) is the number of times a class variable C; takes
state ¢, a)ggc(zxi) is the number of transitions of a feature variable X; from state x; to state
X%, oc)ggc(fi) is the number of transitions from state x; to any other different state
and ‘L';ga(Xi) is the time X; remains in state x;, all before a data set D is considered. The hy-
perparameters can be defined by using expert knowledge and/or optimization techniques,”” such as

random search®® or Bayesian optimization.”’

X; i
Xz a}ga( V= 2z

5 | STRUCTURE LEARNING

The problem of learning the structure of a CTBN has been traditionally approached as an
optimization problem,”****” where a score assigned to structures is maximized. Therefore, this
section adapts some common scores to the multidimensional classification problem with a
Multi-CTBNC.

Score-based algorithms define a score to evaluate how well a model fits the observed data and

a space of candidate structures the model can take. The components of these algorithms are:

« An optimization algorithm: some examples are greedy hill climbing, tabu search, simulated
annealing or genetic algorithms.*******!

« A hypothesis space of structures: in the case of a Multi-CTBNC, the class subgraph must be
acyclic and the bridge subgraph only contains arcs from class variables to features. The
feature subgraph has no restrictions.

A score metric: these are commonly divided into those based on the likelihood function and
the Bayesian scores. The next sections will introduce three different scores for learning the
structure of Multi-CTBNCs.
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51 | Log-likelihood

The simplest approach to learn the structure of a Multi-CTBNC is to maximize the likelihood of
the observed data given the model, P(DIM). The likelihood function of a Multi-CTBNC is

obtained by incorporating the appearance and dependencies of class variables to the likelihood
function of a CTBN:**

LM : D)—H I—[ H( pa(Cy))NPa(Cy) (1a)

y=1 pa(C)) ¢

m pa(Xy) a(Xf)

11 I az)" eo(-azom) 1 (£22) . av
X Z

f=1 pa(Xp) x; ! X, #% "

The equation above shows that the likelihood for a Multi-CTBNC is decomposed into those
for a BN (1a) and a CTBN (1b). This means that the learning of the class subgraph structure
(BN) and the feature and bridge subgraphs (CTBN) of a Multi-CTBNC can be performed
separately since they do not influence each other. In the case of a BN, the search space is
limited to directed acyclic graphs, while the search space of a CTBN is simpler, since the graph
can be cyclic. As the bridge subgraph encodes the dependencies of the features on the class
variables, it is also defined during the learning of the CTBN. As explained above, its structure
has to be restricted to only allow arcs from class variables to features. This is the same re-
striction found in a CTBNC, but here extended to more than one class variable.

In practice, instead of using the likelihood function, a better approach is to maximize the
log-likelihood (LL), which is monotonically related.’’ The reason for this is that the LL is much
easier to maximize and it helps to prevent underflows and overflows caused by the multi-
plication of small numbers and the exponential function:

d
LL(M : D)= )] Z
y=1 pa(Cy)

y

Z Npa(cy)lo (3 ga@) (2a)

) X

m

+Z Z Z{M,ﬁa(}mlog( pa(Xf)>
)

=1 pax;)

o (2b)

. A pa(Xy)

g (6|

Xz #xj

This score tends to overfit the data by favoring densely connected networks. Therefore, a
penalization factor over the complexity of the network, that is, the number of parameters, can
be included. Widely known penalization functions such as the Bayesian information criterion
(BIC)* or the Akaike information criterion*’ can be applied over both the LLs of the BN and
the CTBN. For example, the LL of a Multi-CTBNC with BIC penalization is:

BIC(M : D)= LL(M : D) — log(N) —

e log(N),

dim(Gy U Ger)
2
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where dim(Ge) = Zy 17¢,(1Q¢| = 1) and dim(Gy U Gex) = Z?:l rx;Zx, are the dimension
(number of independent parameters) of the BN and CTBN, respectively, r¢, is the number of
possible instantiations of Pa(Cy) and zx, = (IQx,! — 1)IQx! is the number of possible transi-
tions from each state of X; to any other.

5.2 | Conditional log-likelihood

When facing a multidimensional classification problem, the LL can be defined as:

N N
LL(M : D) = ), logP(clIx?, .y X;T’) + ) logP(x?, —y XET’). 3)

=1 =1

Equation (3) divides the LL into a first term representing the model's ability to classify a
sequence and a second term describing the dependencies among feature variables. If the
number of features is large, the LL is dominated by the second term, which may negatively
impact the performance of the classifier. Consequently, Friedman et al.** proposed to only
focus on the first term, which is the conditional log-likelihood (CLL), thereby following a
discriminative approach. The CLL function was previously proposed by Codecasa and Stella™®
for the learning of CTBNCs, and here we extend it for Multi-CTBNCs.

The idea is to specialize the LL of the CTBN (Equation 2b) in the classification task since it
defines the bridge subgraph and, therefore, the feature variables that are relevant for classifi-
cation. The LL of the BN (Equation 2a) remains unchanged, as interclass dependencies may be
relevant for the classification. This results in the following score:

N N
CLL(M : D) = Z logP(c) + Z logP(CﬂXf‘, X?’),

=1 =1

where

(x4, .., T )P ()
le\i1 IOgP(CﬂX?, v x;Tl) = Zf\il log ( ! ] [T)
) - P(xfl, s X 1)

=3V, [logP(x?, xfT’Icl) + log P(c) @

— log (Zc, P (x?, xfr‘lc’)P (c’)) ]

Equation (4) includes a normalization factor (denominator term) which is what differ-
entiates its result from that given by the LL (Equation 3). Most notable differences with respect
to the CLL for a CTBNC are found in the class probability and denominator terms, which take
into account the multiple class variables and their dependencies. These are estimated,
respectively, as follows:

ZlogP(c,) = Z Y 3 NE©@Io ( pa(Cy))’

y=1 pa(Cy) ¢
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and
N . d 5 pa(Cy) m Mf_a(Xf)
> log ZP(X?, ...,xlT’IC')P(c’) =log [18. " 1 (q Jzcja(Xf)) J
Y ]
=1 c ¢ y=1 f=1 pa(Xp) x;
} pa(Xf) (5)
n A Xr MX'?Xzf
exp(—g 10T ) T (6557) 7 |
X #Xj

In the case of the likelihood term P(x?, xf“lcl), the only difference is that parameters and
sufficient statistics are defined based on the state of, potentially, multiple class variables that are
parents of the features. Unfortunately, the denominator term cannot be further decomposed, as
the logarithm is applied to a sum over all class configurations. Therefore, the log-sum-exp trick may
be required in practice to prevent underflows and overflows.”’

5.3 | Bayesian Dirichlet equivalent score

This section presents a Bayesian score function for learning Multi-CTBNCs, the Bayesian
Dirichlet equivalent (BDe) score, which was first presented for CTBNs by Nodelman et al.*”
Bayesian scores are defined as

BS(G : D) = logP(DIG) + log P(G),

which are derived from the logarithm of the Bayes' rule to obtain the model structure with the
highest probability given the data:

P(DIG)P(9)

P(GD) = )

x P(DIGP(G).

They incorporate a prior probability over the model structures, P(G), which is maximized
together with the marginal likelihood of the data given the structure, P(DIG), which, in con-
trast to the likelihood, does not consider a specific assignment of the parameters. It rather adds
uncertainty about them by integrating over all their possible values for G:

P(DIG) = fB _P(DIB, g0, OP(B, g, 0IG)dBdqdo.
,q,

This has the advantage over the previous scores of hopefully reducing overfitting by evaluating
over all possible values of the parameters.

Making the common assumptions of global and local parameter independence,’ the log-
marginal-likelihood of the data given the structure (i.e., log P (DIG)) can be decomposed into the
sum of local log-marginal-likelihoods for each type of parameter and variable (LML):

d m
logP(DIG) = Y, LML(BZ'®: D) + ¥ [LML(qu‘Xf) D) + LML(0F™ ; D)].
y=1 f=1
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Given that the BDe score assumes a Dirichlet distribution over the parameter priors P (BIG)
and P(@OIG) (with hyperparameters of Section 4), the log-marginal-likelihoods for the para-

meters ng(c nd O X; 4% can be decomposed, respectively, as follows (for a derivation see
[32,45]):
pa<c>) pa(Cy) pa(Cy)
LML(BPQ(Cy) D) — log F(chlcj Y F(/le Y 4 ch y )
pa@) T(Z, 422 + NPU©@) g r(a2e©)
and
. r(af™) r(«ftS? + MED)
LML(©x ™ : D) =log| [] [] X X % ’
pa(Xy) x; F(O()ga( 2 + M)gra( f)) X #EXf F(C()g;?x(z f))

where T'(+) is the gamma function.

In the case of P(qlG), a Gamma distribution is assumed (with hyperparameters of
Section 4). Then, the log-marginal-likelihood for qX PalX) can be estimated with the following
closed formula (for a derivation see [32]):

a(Xr)

Pa(Xp) | F( pa(Xf)+MPa(Xf) + 1)( pa(X,))O‘x, +1
g
LML(q D) log H pa(x f)+M
pa(Xp) x; F( pa(Xy) + 1)( pa(Xf) T)ga(xf))ax,
J

pa(X] f)

Finally, if a uniform prior over the structures P(G) is considered, the BDe score simply
maximizes the log-marginal-likelihood of the observed data given a Multi-CTBNC:

BDe(g:D)=iéLML(Bg:’(C’ : ) é[LML( P“‘Xf):D)+ LML(@‘;}?W):D)].

To further penalize complex structures, a nonuniform structure prior P(G), such as a
Binomial prior distribution,*® can be considered.

5.4 | Structure constraints

Due to the complexity to find and learn all possible Multi-CTBNCs, some assumptions can be
made about the structure, that is, the hypothesis space can be reduced. Furthermore, these
assumptions could help to learn models with better performance since they can prevent
overfitting the data.

Likewise for MBCs, a variety of Multi-CTBNC families can be proposed considering
different search spaces for the class and feature subgraphs. For example, they can be

85UB017 SUOWILIOD BAITER1D) 3|edt(dde au) Aq pauienob ale SSp1Le WO ‘88N J0 s8N 1o} AXeiq1T8UIIUO /3|1 UO (SUORIPUOO-PUE-SWR}W00" A3 | 1 AReIq 1 jeulUo//:SAL) SUORIPUOD pue SWLB | 841 88S *[2202/0T/LT] Uo Ariqiauljuo A8 |IM ‘8 olusliiod pepseAIuN A TT9ZZ UI/Z00T OT/I0p/LI0d A8 1M ARiqpuluo//Sdny wolj pepeojumoq ‘2T ‘T20Z ‘XTTT860T



7852 VILLA-BLANCO ET AL.
WILEY

FIGURE 2 Examples of structures from different Multi-CTBNC families. (A) Empty-empty Multi-CTBNC,
(B) tree-max2 Multi-CTBNC, and (C) DAG-digraph Multi-CTBNC. CTBNC, continuous time Bayesian network
classifier; DAG, directed acyclic graph

limited to be empty, a tree, a forest, a polytree, a maxK (nodes have K parents at most), a
DAG or, in the case of the feature subgraph, a directed graph (digraph). Following the
notation proposed by Bielza et al.,”’ the different families are denoted as {class subgraph
structure} — {feature subgraph structure} Multi-CTBNC. Some examples like the empty-
empty Multi-CTBNC, tree-maxK Multi-CTBNC and DAG-digraph Multi-CTBNC are shown
in Figure 2.

A well-known subclass of classifiers is the naive Bayes family, which assumes condi-
tional independence between features given the class variables. In the case of the Multi-
CTBNC, a fully naive model is an empty-empty Multi-CTBNC (see Figure 2A) with a
complete bridge subgraph. The benefit of this model over independent continuous time
naive Bayes classifiers (CTNBCs)”' is that the number of parameters can be drastically
reduced for certain data sets. Take as example the parameters that would be learned from a
data set with eight ternary variables, three of them class variables. If three CTNBCs are
built, the total number of independent parameters would be 276 since there would be 45
intensity matrices (three for each of the 15 feature nodes), each of them with six degrees of
freedom, plus three CPTs with a degree of freedom of two. However, if there are exclusively
five possible class configurations, a fully naive Multi-CTBNC would only require 156
parameters since the number of intensity matrices is reduced to 25 (five for each of the five
feature nodes). Therefore, if the number of possible states of the class variables is large, but
the number of class configurations is relatively small, a fully naive Multi-CTBNC would
need a potentially much smaller number of parameters.

The *-maxK Multi-CTBNC family is of special interest since, for fixed K, the learning of
a CTBN can be performed in polynomial time depending on the number of variables and
data set size.”” This is possible since the parent set of each CTBN feature can be optimized
individually without having to worry about avoiding cycles in the resulting structure.
Unfortunately, complexity for learning the bridge and feature subgraphs increases rapidly
with the inclusion of more class variables. A *-maxK Multi-CTBNC does not limit the
number of class variables that can be parents of the features, in the same way as a *-maxK
MBC does, so the total number of parents could potentially be K + d for each feature.
Evidently, this problem could be alleviated by imposing restrictions on the number of class
variables."*

Regarding the learning of the class subgraph, if a general DAG or even a max2 are con-
sidered, finding its optimal structure would be NP-hard due to the acyclicity constraint.”’ If the
number of class variables is relatively large, a tree structure may be a better option since
polynomial-time learning algorithms can be applied.”****°
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6 | CLASSIFICATION

Given a sequence S, = {xg, xpTP}, whose transitions are fully observed, classification is per-
formed by choosing the class configuration that maximizes the posterior probability, that is, the
maximum a posteriori estimate of

P(S,lc)P(c) g
P(clS,) = 15(751,) « P(S,Je)P(c) = JHI }11 P(xfy1e) P (i) )H P(c,lpa(Cy)).

(6)

The term P(x Ic) is the probability that feature variable X; stays in state x f during the time
interval of length 6 = tj41 — t; given the class configuration c:

P(x;fflc) = exp( q (Xf)é)

while P(x;f;llxg , €) is the probability that X; transitions from state x;ff to state x;’f“ when it is
known that a transition occurs and given the class configuration c:

o) = o p,f()fjile) il # x5

+1
p ( Xpf o
1 otherwise,

where ¢ is a small positive number. Finally, P(cylpa(C,)) represents the probability of class
variable C, taking state c, given the parent's state pa(C,):

P(cylpa(Cy)) = ﬁci’a(cy).

Therefore, the predicted class configuration c* for a sequence S, is

1 m
c* = argmax Ip—l Hex ( q” (Xf)é) ( by )H 5pa(Cy) (7
c j=1 f=1

As it happened before, the logarithm of the argmax argument in Equation (7) is used
instead for convenience.

If estimating the a posteriori probabilities of each class configuration is needed, the mar-
ginal likelihood of the sequence S, must be computed, that is, the denominator term of the
posterior probability (Equation 6) cannot be ignored:

P(Sy) = Z P(Syle)P(c).

Unfortunately, as shown in Equation (5), this term cannot be further decomposed.
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FIGURE 3 Structures from which synthetic data sets were generated

7 | EXPERIMENTS

This section will empirically compare the performance of the Multi-CTBNC with multiple in-
dependent CTBNCs for the multidimensional classification of synthetic and real-world time series
data. The assessment will be performed with several performance evaluation metrics estimated with
a fivefold cross-validation scheme to guarantee an honest and fair comparison. The learning of the
model structures will be done by hill-climbing optimization, using the aforementioned scores and an
empty initial structure. Parameters will be learned with Bayesian estimation using hyperparameters
/105’“(01‘) =1, ocyfj’_gfzxi) =1 and T)ga(x,.) = 0.001, which were found to provide interesting results.

All experiments were run on an Intel Core i7-7700K at 4.20GHz with 32 GB of RAM using
Windows 10 operating system. The Multi-CTBNC and CTBNC were developed in Java and the
software and data sets are freely available at https://github.com/carlvilla/Multi-CTBNCs.

7.1 | Data sets

The proposed model will be first evaluated over randomly generated synthetic data. Then, a
real-world data set from an industrial machine (from now on referred to as energy data set) is
used to prove the usefulness of the model in a real-world scenario.

7.1.1 | Synthetic data sets

Fifty synthetic time series data sets were randomly generated from the structures of Figures 1A and
3A-I (five data sets per structure). The objective is to compare the performance of the Multi-CTBNC
with independent CTBNCs when the data is obtained under diverse conditions. The class variables
(Cy, G, G, Cy, and Cs) are assumed ternary, while the feature variables (X, X5, Xz, X4, and X;s) can
take four values, so they have three possible transitions from a certain state.
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The data sets are sampled via probabilistic logic sampling’' from random CPTs and CIMs.
To sample a sequence, a class configuration obtained from a BN and an initial observation are
first defined for the sequence. From this we can sample the time that each feature variable will
remain in its current state. Therefore, this time gives the order in which the transitions of the
features will occur, obtaining a new observation for the sequence after the transition of only
one of them. The new state to which the feature variable transitions is sampled by taking into
account the current state of its parent features, as well as the classes of the parent class
variables. Once the transition is done, a duration time for the new state of the feature is
sampled and the above process will be carried on until a sequence of a predefined duration is
obtained. In our case, each data set contains 10,000 sequences that last a bit more than 10 time
units (an average of 164 transitions).

7.1.2 | Energy data set

The energy data set contains electrical measurements extracted in collaboration with a partner
company from an industrial machine working in a real environment. These variables include
intensity (I), voltage (V), active power (P), reactive power (Q), and apparent power (S), which
were observed at a sampling frequency of 500 Hz and discretized into 30 states with an equal
width discretization. The industrial machine is composed of different three-phase motors and,
therefore, for each energy variable a measure in each of the three phases (A, B, and C) was
obtained. In total, the data set has 15 feature variables.

The task to perform with the energy data set is to classify the power consumption state
(high, low, or inactive) of six motors (M1, M2, M3, M4, M5, and M6), which constitute six class
variables, by using the energy consumption of the machine as a whole. It is important to note
that these motors are related to each other, as M1 and M2, as well as M5 and M6, work together
on very similar tasks. At the same time, M3 and M4 work synchronously with the motor pairs
M1/M2 and M5/M6, respectively.

As in a real application we cannot obtain sequences where the motors have a unique state
for all transitions, the extracted training sequences have a fixed duration of 0.3 s, determined
based on the needs of the company, and the consumption state assigned for the motors is the
one that occurs the most.

7.2 | Performance evaluation metrics
Evaluation metrics for multidimensional classifiers should consider, simultaneously, the per-
formance of the model on multiple class variables. Although the literature on this topic is

limited, several evaluation metrics have been already proposed for this context:

+ Global accuracy:"’ ratio of sequences that were correctly classified for all class variables, that
is, a partially correct classification is considered as an error:

Acc = %é 5(0{, cl),
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where ¢; and ¢, are the predicted and actual classes of sequence I, respectively, and §(-,-) is
the Kronecker's delta function, so §(c, ¢;)) = 1 if ¢; = ¢; and 0 otherwise.
+ Mean accuracy:"’ mean of the accuracies obtained for each class variable separately:

. 1 d 1 d N
= EZ = EZ Z 5(CZ;C[y),
y=1 y=1 =1

=]~

where Acc, is the accuracy for class variable C,.
« Global Brier score:’” it measures the accuracy of probabilistic classifiers by considering the
probability that assigns to multidimensional predictions:

N |7

Bs= 130 % ((C = egxt o x") - 5(ep )

llgl

where Z = Qg X -+ XQ¢, is the space of joint configurations of the class variables.
« F, score: harmonic mean of the precision (P) and recall (R) on a class c;:

PR _, P,
P+R  2p, +fp, +fn,’

13}

where tp, , fpcj, and fncj are the counts for true positives, false positives and false negatives,
respectively, for class ;.

Traditional equations for precision, recall and, therefore, F; score can only be used for a
unique binary class variable. However, Gil-Begue et al.”” extended them for multiple, possibly
nonbinary, class variables. Let B be a function that computes any of these evaluation metrics by
receiving a confusion matrix, then the metric scores are obtained with macro- and micro-
averaging as follows:

« Macro-averaging: averages the scores of each class variable:

1
—— > B(tp,,fp.,the, fn.),  if1Qc| > 2
Macro = Z ch where ch — |QCy| 4 (¢ ¢ j ¢ y
B(tpc,, foc,» the,s fre,) otherwise.

If the class variable C, is binary, only the confusion matrix for one of its classes

(tpcy, fpcy, inc,, fncy) is considered.
« Micro-averaging: aggregates the confusion matrices of each class variable:

d d d d
Buicro = B Z TPCy’ Z FPCy’ Z TNCy’ Z FNCy ’
y=1 y=1 y=1 y=1
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where

(TPe. PP TNe. FNo = |10 Z APy, foy s tnep g}, i 1Qc1 > 2
Cy 'Ley, Cy» G =

{tpcy,fpcy s tne,, fc 1, otherwise.

Only the macro-averaging approach will be considered in our experiments to calculate the
F, score, as the micro-averaging is equivalent to the mean accuracy when the cardinality of all
class variables is the same and greater than two. As a false positive for a certain class is, at same
time, a false negative for another when a multiclass class variable C, is considered, that is,
ch fpcj = ch fng, both the micro-averaged precision and recall for C) are equivalent and,
therefore, equal to the micro-averaged F; score. Given that the micro-averaged precision and
the accuracy for C, can be computed as follows:

ch tpcj _ ch tpcj
2t + 2o J0,, N

Pmicroy = = Accy,

then we can infer that the mean accuracy of multiclass class variables with the same cardinality
is equivalent to the micro-averaged F, score:

d 1 d
D 00 N D >4
1micru - d 1 d 1 —_ d
Zy:lIQcyI ch pg, + Zy:lIQcyl Zc,-fpcj Zy=1 [ZCJ, p;, + chfpcj]
d
_ Zy:l ch tpc.r Z tpcj

18 A
== = Acc.
dN dZ

Note that the normalization factors 1/1Q¢,| cancel each other out since the cardinality is as-
sumed to be the same for each class variable. Otherwise, this equality would not hold.

7.3 | Results
7.3.1 | Synthetic data set

Average results obtained from fivefold cross-validations over the five data sets generated from
each structure are shown in Tables 2-4. Each table includes the performance of the models
when they are learned with different scores. The mean and standard deviation for each eva-
luation metric are reported and the best results are written in bold.

Interesting results have been obtained in all experiments except with the CLL score
(Table 3). This score did not lead to the expected models, at least in the performed experiments,
since most learned structures have an empty bridge subgraph even when no penalization on their
complexity is applied. The reason is the difference between the likelihood and denominator terms,
as the latter tends to be larger (and therefore the score smaller) with the inclusion of dependencies
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FIGURE 4 Original and learned structures with different scores. (A) Original structure, (B) BIC score, and
(C) BDe score. Extra dependencies are represented by dashed arcs. BDe, Bayesian Dirichlet equivalent;
BIC, Bayesian information criterion

in this subgraph. The CLL score then favors very sparse or even empty structures. Consequently,
the following analysis will focus on the results achieved with the BIC and BDe scores.

As we can see in Tables 2 and 4, the Multi-CTBNC outperforms the independent CTBNCs
in all synthetic experiments using both the BIC and BDe scores. As averages are susceptible to
outliers, the Wilcoxon signed-rank test was applied over all the results of the 50 data sets to
verify that there are statistical differences in the performance of the Multi-CTBNC and the
CTBNC:s. This results in p-values smaller than 0.001 for both scores in all evaluation metrics.
Therefore, the differences are highly significant and the null hypothesis that both methods
perform equally well is rejected in favor of our new model. The Multi-CTBNC has an important
advantage in those contexts where class variables have a very weak or nonexistent relationship
with the features that we were able to collect. This can be seen in some class variables from
Figures 3A,B,E,F. The reason for this is that the Multi-CTBNC can model the dependencies of
those class variables with others, while the CTBNCs may only rely on their prior probabilities.

The influence of the scores on the model performance was also studied and significant dif-
ferences were found. If we compare the results of the Multi-CTBNC in Tables 2 and 4, a slight
improvement is generally appreciated with the BDe score. This was verified for all evaluation
metrics with the Wilcoxon signed-rank test and a significance level of 0.005. We observed in our
experiments that this score tends to be more robust to data overfitting and to better reconstruct the
original structures. As an example, Figure 4 shows how the BIC creates a slightly denser structure
from a data set of Figure 1A, while the BDe reports a more accurate result.

Results obtained with the data sets from Figure 3H are of special interest since there are no
dependencies among the class variables and a more even result between the independent
classifiers and the Multi-CTBNC was expected. However, the Multi-CTBNC significantly im-
proves all metrics while, in most cases, correctly does not define any association between class
variables. The fact of knowing the simultaneous dependencies of the features on different class
variables allows the Multi-CTBNC to learn more accurate models. For this same reason, even
an empty-digraph Multi-CTBNC may obtain better results than independent CTBNCs. Table 5
shows the performance of an empty-digraph Multi-CTBNC on the synthetic data sets, high-
lighting in bold the results that improve those of the CTBNCs (Table 4). Significant improve-
ments were found in all evaluation metrics, except the macro-averaged F; score, with the
Wilcoxon signed-rank test and a significance level of 0.001. This justifies the use of Multi-
CTBNCs even when it is clear that there are no dependencies between the class variables.

Finally, Table 6 shows the learning times for the Multi-CTBNC and the CTBNCs when they are
built with the BIC and BDe scores. The learning of a Multi-CTBNC is considerably faster than
multiple CTBNCs when using the proposed data sets. Additionally, the BIC is significantly more time
consuming since it tends to build denser structures (see Figure 4). These differences are statistically
significant with the Wilcoxon signed-rank test and a significance level of 0.001. Note that the learning
of both a CTBNC and a Multi-CTBNC, as well as the different CTBNCs, is performed in parallel.
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7.3.2 | Energy data set

Due to the high cardinality of the energy data set feature variables, their nodes are limited to
have at most one feature as a parent. Therefore, this section compares the differences in
performance between independent maxl CTBNCs and a DAG-max1 Multi-CTBNC.

Fifteen data sets with different sequence order were extracted from the original energy data
set and a fivefold cross-validation was performed on each of them. The average results of the
cross-validations are shown in Table 7, where the DAG-max1 Multi-CTBNC outperforms the
independent classifiers in all evaluation metrics. In this occasion, the most interesting models
were obtained with the LL penalized with BIC, unlike with the synthetic data sets. This is
because the BDe defines empty bridge subgraphs, so the classification is performed without

TABLE 5 Estimated evaluation metrics (mean + std. deviation) over the synthetic data sets when learning
an empty-digraph Multi-CTBNC with the BDe score

Data sets Global accuracy Mean accuracy Global Brier score Macro F; score
Figure 1A 0.3986 + 0.0189 0.7864 + 0.0144 1.0912 + 0.0346 0.7517 + 0.0219
Figure 3A 0.1456 + 0.0272 0.7027 + 0.0252 0.9486 + 0.0143 0.5426 + 0.0350
Figure 3B 0.1812+0.0156 0.7316 + 0.0056 1.0001 + 0.0220 0.6422 + 0.0127
Figure 3C 0.3316 + 0.0540 0.7662 + 0.0240 1.1817 £ 0.0831 0.7265 + 0.0322
Figure 3D 0.2935 + 0.0124 0.7597 + 0.0074 1.2501 + 0.0246 0.7124 + 0.0269
Figure 3E 0.2566 + 0.0897 0.7639 + 0.0479 0.9574 + 0.0585 0.6611 + 0.0312
Figure 3F 0.1859 + 0.0514 0.7298 + 0.0329 0.9351 + 0.0229 0.5991 + 0.0185
Figure 3G 0.3011 + 0.0265 0.7656 + 0.0120 1.2380 + 0.0513 0.7144 + 0.0249
Figure 3H 0.3755 + 0.0346 0.7860 + 0.0198 1.1319 + 0.0657 0.7032 + 0.0147
Figure 31 0.3135 + 0.0622 0.7579 + 0.0341 1.2234 + 0.1133 0.7010 + 0.0229

Abbreviations: BDe, Bayesian Dirichlet equivalent; CTBNC, continuous time Bayesian network classifier.

TABLE 6 Model learning times in seconds (mean std. deviation) on all synthetic data sets

CTBNCs (BIC)

29.29 +2.76

CTBNCs (BDe)

24.25+1.99

Multi-CTBNC (BIC)

15.89+1.82

Multi-CTBNC (BDe)

14.17 + 2.38

Abbreviations: BDe, Bayesian Dirichlet equivalent; BIC, Bayesian information criterion; CTBNC, continuous time Bayesian
network classifier.

TABLE 7 Estimated evaluation metrics (mean std. deviation) over the energy data set when learning with
the BIC score

Model Global accuracy Mean accuracy Global Brier score Macro F; score
max1 CTBNCs 0.6897 + 0.0033 0.8600 + 0.0015 0.5377 + 0.0056 0.8005 + 0.0034
DAG-max1 Multi-CTBNC  0.7412 + 0.0022 0.8622 + 0.0017 0.4672 + 0.0039 0.8151 + 0.0037

Abbreviations: CTBNC, continuous time Bayesian network classifier; BIC, Bayesian information criterion.
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FIGURE 5 Structure of a DAG-max1 Multi-CTBNC learned from the energy data set. CTBNC, continuous
time Bayesian network classifier; DAG, directed acyclic graph

considering the feature variables. Wilcoxon signed rank tests show significant differences for all
evaluation metrics with a significance level of 0.001.

Figure 5 shows an example of a Multi-CTBNC structure learned on the energy data set.
Unsurprisingly, all class variables have the same six features as children since they all
represent similar motors. The remaining energy features are not shown as the model does
not consider them for classification. The differences of the class variables lie in their in-
fluence on the total consumption of the machine and their relationships with each other.
Regarding the latter, the results are very accurate since most dependencies match the de-
scription of Section 7.1.2. In this problem, the differential factor that makes the Multi-
CTBNC perform better than independent CTBNC:s is its ability to model these dependencies.
Expected relationships among feature variables are also detected since they involve mea-
surements over the three different phases of the electrical system. The reason for this is that
the current and voltage are balanced, with the same magnitudes and 120 degrees dis-
placement, between each phase. Nonetheless, this balance could be affected in terms of
magnitude and/or phase angular displacement by the type of the electrical consumers (e.g.,
single phase elements) or anomalous behaviors (e.g., failure of electronic components, such
as, phase diode, fuse or isolation). The advantage of using a graphical model is that these
machine malfunctions could be easily detected by analyzing the learned structure.

8 | CONCLUSIONS AND FUTURE RESEARCH

This article introduces the Multi-CTBNC, a new probabilistic graphical model that is able to
capture the dependencies of multivariate temporal sequences and perform multidimensional
classification over them. The learning of its parameters and structure from data is discussed,
and its usefulness is justified by solving a novel real-world engineering problem.

Score-based learning algorithms for Multi-CTBNCs were studied, as it is the common ap-
proach for learning CTBNs. However, a constraint-based algorithm for CTBNs has been re-
cently proposed by Bregoli et al.”* where it was experimentally shown to perform better in
certain scenarios. Therefore, its extension to learn classification models and, more specifically,
the use of its fundamentals to develop a constraint-based algorithm for Multi-CTBNCs are
possible lines of research.

The adaptation of Multi-CTBNCs to handle other types of predictive problems where data
and sources have different characteristics is currently being studied. First, an important lim-
itation of the presented model is that the feature variables are assumed to be discrete, while the
problem of discretizing time series still requires more attention.’” Nonetheless, we would like
to study a possible adaptation of Multi-CTBNCs (and therefore CTBNs) for continuous
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variables, thus avoiding this discretization. Second, this study assumes no missing data or
hidden variables, that is, complete data assumption, which in practice is not always the case.
Third, the classifier can easily use other distributions to model the waiting times of variables in
a certain state. This is the case of hypoexponential distributions, previously used with CTBNs,””
which are more appropriate than the exponential for certain applications.

The study of structure constraints for CTBNs has not received a lot of attention and, to the
best of our knowledge, only the learning of naive Bayes and structures where nodes have a
maximum number of parents were considered. It could be interesting to analyze the possible
benefits in terms of computational complexity and performance of learning CTBNs with other
constraints, such as being trees or DAGs.

Finally, although a really limited number of class variables is commonly assumed, multiple
applications stand out for having a large number of them. For example, the industrial problem
introduced in this article could require classifying many more motors. Therefore, we plan to
study the inclusion of feature selection approaches to the Multi-CTBNC to make classification
under these conditions less prohibitive. This would allow to include restrictions over the
complexity of the bridge subgraph. With a similar objective, it would be interesting to design
class-bridge decomposable”’ Multi-CTBNCs to reduce the computational cost of estimating the
most probable class configuration of a sequence.
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ENDNOTES

*Sequences may have different timestamps, superscript I is omitted from ¢ for simplicity.

"The state domain of each variable can be different, but the subscript i is omitted from k for simplicity.
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