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As artificial intelligence is being increasingly used for high-stakes applications, it is becoming more and
more important that the models used be interpretable. Bayesian networks offer a paradigm for inter-
pretable artificial intelligence that is based on probability theory. They provide a semantics that enables
a compact, declarative representation of a joint probability distribution over the variables of a domain by
leveraging the conditional independencies among them. The representation consists of a directed acyclic
graph that encodes the conditional independencies among the variables and a set of parameters that
encodes conditional distributions. This representation has provided a basis for the development of algo-
rithms for probabilistic reasoning (inference) and for learning probability distributions from data.
Bayesian networks are used for a wide range of tasks in machine learning, including clustering, super-
vised classification, multi-dimensional supervised classification, anomaly detection, and temporal mod-
eling. They also provide a basis for estimation of distribution algorithms, a class of evolutionary
algorithms for heuristic optimization. We illustrate the use of Bayesian networks for interpretable
machine learning and optimization by presenting applications in neuroscience, the industry, and bioin-
formatics, covering a wide range of machine learning and optimization tasks.

� 2021 Published by Elsevier B.V.
1. Introduction

Artificial intelligence is increasingly present in everyday lives of
ordinary citizens. For example, machine learning is widely applied
for evidence-based decision-making in domains such as health-
care, policing, and finance [1]. Many of the machine learning mod-
els used are black boxes [2] that do not explain their predictions in
a way that a human can understand. This lack of transparency has
had particularly severe consequences in high-stakes applications:
people have been incorrectly denied parole, while, on the other
hand, poor bail decisions have led to releasing of dangerous crim-
inals [3]. Government agencies [4] and other actors [5] are now
increasingly demanding for artificial intelligence to be explainable
and transparent; the European Union, for example, guarantees the
right to an explanation of an automated decision in domains such
as medicine, law and finance. In addition, experts in many fields —
ranging frommedical diagnosis [6] and bioinformatics [7] to finan-
cial applications [8]— require understanding the model’s decisions
in order to use it [9]. In data science and scientific discovery, the
analysis of interpretable models learned from data can provide
novel knowledge and lead to the formulation of new theories
(see e.g. [10]).

The ‘explainable artificial intelligence’ [11,12] approach tries to
‘explain’ a black box model with a second, post hoc model. For
example, neural networks are often converted into decision trees
or logical rules while deep neural networks for text and images
are explained with saliency masks that highlight the determining
aspects of a text or image [13]. These explanations, however, are
often not faithful to the original model nor do they provide suffi-
cient detail [3]. Contrary to a black-box model, an interpretable
model does not require a post hoc explanation in order to be
understandable by a human [14,15]. Interpretability is, however,
an elusive concept [14,16,17] that may mean different things to
different stakeholders [18,19]. For example, the developers of the
model may primarily care about quality assurance, policy-makers
about fairness, and end users about whether the output can be
trusted. Arrieta et al. [16], Lipton [14] and Murdoch et al. [17],
among others, consider that the general characteristics of an inter-
pretable model include simulatability (i.e., a human is able to con-
template and reason about the entire decision-making process at
once), decomposability, and algorithmic transparency while Rudin
[3] considers it a domain-specific notion and emphasises models
that obey domain specifics such as causality or monotonicity.
Nonetheless, models such as logical rules, linear models and deci-
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sion trees are widely considered to be interpretable
[3,13,16,20,21], while some authors also consider k-nearest neigh-
bours, additive models, and Bayesian networks to be interpretable
[16,21]. A small rule set, for example, is simulatable, as it can be
fully contemplated by a user, while being decomposable as well
as algorithmically transparent. A large rule set, on the other hand,
is not simulatable, yet each of its predictions might be, as long as
they are given by a few rules; the model is then locally inter-
pretable [13]. Although many authors assume that there is a
trade-off between predictive performance and interpretability
(e.g., [17]), there is often no significant difference between com-
plex and simple, often interpretable, classifiers on structured data
with meaningful features [3]. In addition, the apparent advantages
observed in ‘laboratory’ settings during model comparison may
well be overwhelmed in practice by issues such as low quality class
labels and sample selection bias [22]. For example, a classifier that
very accurately distinguished between friendly and enemy tanks
on the test set of photographs later had very poor performance
in the field; subsequent analysis found that friendly photos were
taken on sunny days while enemy photos on overcast days [21].
Such issues leave the simpler models as the appropriate choice
by the principle of parsimony [22].

A direct extension of logical rules for plausible reasoning with
uncertainty is probability theory [23]. Modeling a joint probability
distribution (JPD) over the random variables of a domain allows us
to perform probabilistic reasoning, such as predicting the value of a
particular variable given the values of other variables. A JPD over
many variables, however, cannot be specified directly due to its
enormous size. A Bayesian network (BN) [24–26] allows us to com-
pactly model a JPD over many random variables by leveraging con-
ditional independencies among them. It also provides a basis for
specifying algorithms for reasoning (inference) and for learning
models from data. In a BN, the variables are represented as the
nodes of a directed acyclic graph (DAG); the graph is referred to
as the networks’ structure and its arcs have a formal interpretation
in terms of probabilistic conditional independence among vari-
ables. In addition to the graph, a BN has a quantitative part, a set
of parameters that specify the conditional probabilities for each
node in the DAG. The JPD is then given by the product of all these
conditional probabilities associated with the DAG. The structure
and the conditional probabilities of a BN can be given by a domain
expert or may alternatively be learned automatically from data,
with the optional inclusion of expert knowledge. Once the BN is
specified, it constitutes a powerful tool for reasoning with exact
or approximate inference methods. For example, it allows for
abductive inference, that is, finding an explanation for some
observed evidence. They are thus widely used [e.g.,][27–29] for
diagnosis, prognosis and prescription in healthcare, as they provide
for interpretable and rational decision-making in domains with
inherent uncertainty [30]. A BN is decomposable due to conditional
independencies, the learning algorithm is transparent as it mainly
amounts to combinatorial search and distribution fitting, and is
simulatable as long as it is not excessively large [16].

Indeed, many of the early applications of BNs were to expert
systems in medicine. The medical experts were unlikely to follow
the given advice unless they understood how the model reached
its conclusion and why it was appropriate [31,32]. In such a setting,
an interpretable and simple model on its own may not be suffi-
cient. In particular, experiments with the early medical decision
support system MYCIN [33] showed that logical rules alone are
not sufficient for explanations that are understandable to medical
students [34]. Indeed, while the normative probabilistic reasoning,
implemented with BNs, can be at odds with human reasoning
under uncertainty, which is plagued with heuristics and biases
[35], formal logic is not necessarily a good model of human reason-
ing either, as it provides domain-independent rules while human
649
reasoning is content-dependent [36]. A number of solutions have
thus been developed to help the user understand the reasoning
(that is, the inference process) of a BN as well as the model itself
[37]. These solutions are studied, along with abductive inference,
under the term explanations of BNs. The term explanation here
comes from the expert systems literature and its meaning is dis-
tinct from that of the post hoc explanations of black-box models.
For example, many of the tools for ‘explaining’ the model are sim-
ply tools for visualizing the graph of a BN; they simplify the access
to the model without altering it.

In addition to machine learning, BNs are widely used in another
area of artificial intelligence, namely, that of heuristic optimization
[38]. In particular, they provide a basis for estimation of distribu-
tion algorithms [39–42], evolutionary algorithms that, instead of
the mutation and crossover operators of genetic algorithms, esti-
mate a JPD over promising solutions and then sample from this
JPD to produce a new generation of solutions.

The aim of this paper is to illustrate that BNs are an excellent
paradigm for interpretable artificial intelligence. Besides being able
to provide explanations of their predictions, the structure and the
parameters learned from data provide information about the prob-
abilistic dependencies among the variables. BNs are also a versatile
framework that is used for a wide range of tasks in machine learn-
ing. We illustrate our claims by describing a number of applica-
tions of BNs for machine learning and heuristic optimization. In
particular, we cover applications to different machine learning
tasks —namely, clustering, supervised classification, multi-
dimensional supervised classification, and anomaly detection in a
temporal domain— in two different domains, neuroscience and
the industry. Regarding heuristic optimization, we present an
application to a bioinformatics uni-dimensional combinatorial
problem and an application to a multi-dimensional problem with
continuous variables, focusing on the discovery of relationships
between the variables in the former and the objectives in the latter.

The rest of the paper is organized as follows. Section 2 intro-
duces BNs by describing their semantics and the concept of condi-
tional independence, explaining exact and approximate inference,
giving a brief review of explanation in BNs, describing algorithms
for learning a network structure and the conditional probabilities
from data, and presenting their adaptations to supervised classifi-
cation and temporal modeling. Section 3 then presents applica-
tions of BNs for machine learning in neuroscience and the
industry. In neuroscience, we present applications in neu-
roanatomy, neurophysiology and in a neurodegenerative disease.
Regarding industry, we present the use of dynamic BNs for anom-
aly detection in laser surface heat treatment in manufacturing. Sec-
tion 4 presents the application of BNs in estimation of distribution
algorithms in a combinatorial uni-objective problem as well as in a
multi-objective problem with continuous variables. Section 5
rounds the paper off with conclusions.
2. Bayesian networks

BNs are widely used models of uncertain knowledge. They are
useful because they can provide a compact representation of a
JPD across many random variables, pðX1; . . . ;XnÞ. The JPD over the
variables of a domain is of great interest since, when known, it lets
us answer any probabilistic question about the domain and thus
solve tasks of interest such as, for example, predicting the value
of a particular variable given the values of other variables.

In general, however, a JPD is intractable with a medium or large
n (number of variables) because specifying it requires an enormous
number of parameters (e.g., 2n � 1 parameters if all variables are
binary). This is intractable computationally, as we cannot store
nor process that many parameters; cognitively, as an expert cannot
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understand such a model; and statistically, as we cannot obtain
sufficient data to estimate it reliably. A JPD can be made tractable
by leveraging the notion of conditional independence between
variables in order to reduce the number of parameters. Random
variables X and Y are conditionally independent (c.i.) given another
random variable Z if

pðxjy; zÞ ¼ pðxjzÞ 8x; y; z values of X;Y ; Z:

That is, X and Y are c.i. given Z if, for any Z ¼ z, knowing Y ¼ y does
not affect the probability of x (note that X;Y; Z may also be disjoint
random vectors). Thus, after decomposing pðx; y; zÞ according to the
chain rule, pðx; y; zÞ ¼ pðzÞpðyjzÞpðxjy; zÞ, we can equivalently write it
as pðzÞpðyjzÞpðxjzÞ, thus reducing the number of parameters in the
last factor.

A BN consists of a DAG G and a set of parameters h (see Fig. 1).
The vertices (i.e., nodes) of G correspond to the variables
X ¼ ðX1; . . . ;XnÞ while its directed edges (i.e., arcs) encode the con-
ditional independencies among the variables X. The parents of a
node Xi;PaðXiÞ, are all the nodes with arcs pointing to Xi, while
the children of Xi are all nodes towards which Xi has outgoing arcs.
The descendants of Xi are all the nodes reachable from Xi by follow-
ing the arcs, while its complement in X n fXig is NDðXiÞ, the set of
non-descendants of Xi. The basic set of conditional independences
encoded by a BN is

Xi is c:i: of NDðXiÞ given PaðXiÞ; i ¼ 1; . . . ; n;

that is, each node is c.i. of its non-descendants given its parents.
This set of independencies is referred to as the local Markov
independencies.

If the local Markov independencies of G hold in a JPD pðXÞ then
we can factorize pðXÞ according to G and vice versa. Namely, the
fact that G is acyclic ensures there is at least one topological order-
ing of the variables X1; . . . ;Xn such that fX1; . . . ;Xi�1g only contains
non-descendants of Xi. Thus, after applying the chain rule,

pðX1; . . . ;XnÞ ¼ pðX1ÞpðX2jX1ÞpðX3jX1;X2Þ � � �pðXnjX1; . . . ;Xn�1Þ;
Fig. 1. A hypothetical BN modeling the risk of dementia. All variables are binary, wit
Atrophy N, Stroke S and Paralysis P; for Age A; a means ‘aged 65+’ and otherwise th
Age, their parents in the DAG. These two conditions influence Dementia, their child in t
descendant of Dementia, it is independent of it given Neuronal Atro

pðA;N; S;D; PÞ ¼ pðAÞpðNjAÞpðSjAÞpðDjN; SÞpðPjSÞ. The CPTs are depicted as tables and the
node. For instance, if someone has neuronal atrophy and has had a stroke, there is a 0.9
neuronal atrophy and stroke, this probability is 0.10, i.e., pðdj– gn; – gsÞ ¼ 0:10. Figure
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we can remove all non-descendants other than parents from the
conditioning sides,

pðX1; . . . ;XnÞ ¼ pðX1jPaðX1ÞÞ � � � pðXnjPaðXnÞÞ; ð1Þ

thus obtaining the factorization of pðXÞ according to G. This factor-
ization is known as the chain rule for BNs.

The parameters h specify the local conditional distributions of
each variable given its parents’ values. For a discrete variable Xi,
each parameter hijk encodes the probability pðXi ¼ kjPaðXiÞ ¼ jÞ,
and all the hijk are usually tabulated in a conditional probability table
(CPT). When X contains only continuous variables, it is straightfor-
ward to model a multivariate normal density over X with a BN. In
this case, the local conditional density for Xi is
pðXijPaXiÞ ¼NðXi; bi0 þ bT

i PaXi;r2
i Þ, where PaXi is an assignment

to PaðXiÞ. The parameters set, h, thus contains a vector of coeffi-
cients bi0; b

T
i ;r2

i

� �
for each Xi.
2.1. Conditional independence

In addition to the local Markov independencies, a DAG G may
encode additional independencies that hold in a JPD p that factor-
izes over G. All such independencies can be identified by verifying
the graphical d-separation property. Thus, if node X is d-separated
from node Y given node Z, then X and Y are c.i. given Z. The set of all
independencies verified by d-separation is called the set of global
Markov independencies [25]. While all independencies implied by
d-separation hold in p, the reverse might not be true: a conditional
independence that holds in p need not be verified with the d-
separation property. If the reverse does hold, meaning that the
set of global Markov independencies and those that hold in p are
equivalent, then p is said to be faithful to G and G to be a perfect
map of p.

For any node Xi, a set of variables of particular interest is its
Markov blanket, composed of its parents, its children and the par-
h x denoting ‘presence’ and – gx denoting ‘absence’, for Dementia D, Neuronal
e state is – ga. Note that both Stroke and Neuronal Atrophy are influenced by
he DAG. Paralysis is directly associated with having a stroke. Since Age is a non-
phy and Stroke, the parents of Dementia. The JPD factorizes as
y contain the parameters, encoding the conditional probabilities attached to each
6 probability that the person will have dementia: pðdjn; sÞ ¼ 0:96; in the absence of
from [43].
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ents of its children (spouses) in G. Namely, each Xi is c.i. of all other
nodes in the network given its Markov blanket:

pðXijX n fXigÞ ¼ pðXijMBðXiÞÞ:
Therefore, for example, the only knowledge useful for predict-

ing Xi is that of the variables in MB(Xi).

2.2. Exact and approximate inference

Besides visualizing the relationships between variables and ver-
ifying conditional independencies, a BN allows for any type of
probabilistic reasoning over a domain, including causal (predic-
tive), diagnostic, and abductive reasoning. Such reasoning is per-
formed by means of probabilistic queries. The two most common
queries are conditional probability (CPQ) and maximum a posteri-
ori (MAP) queries.

A CPQ refers to finding pðxijeÞ, the probability of a query vari-
able Xi conditioned on e, the values of the observed variables E,
called the evidence. Note that, in addition to Xi and E, we may also
have unobserved non-query variables Y. In Fig. 2 we see that, for
example, the probability of a patient having a paralysis goes up
from 11% to 75% after learning that the patient has had a stroke.

A MAP query refers to finding the values of a set of variables
that best explain the observed evidence, allowing for abductive
reasoning. That is, we are interested in argmaxypðyjeÞ, where the
solution is referred to as the most probable explanation (MPE) when
Y corresponds to all variables in X other than E. In the BN from
Fig. 1, the MPE for a patient with paralysis is he or she is aged 65
+, has had a stroke and has not had neither neuronal atrophy nor
dementia.

Computing these probabilities is conceptually simple. For
example, with discrete variables

pðxijeÞ ¼ pðxi; eÞ
pðeÞ /

X

y

pðxi; e; yÞ:

The limitation, however, is that the summation over y, needed in
order to marginalize Y, grows exponentially with the number of
variables in Y. Thus, many algorithms exist for tackling the compu-
tation of exact and approximate inference.

2.3. Exact inference methods

Exact inference is NP-hard [44,45] in general BNs, meaning that
a polynomial time algorithm (in n) is most likely not to exist. A
number of algorithms, however, work well in many practical cases.
Fig. 2. Exact inference on the risk of dementia example. (a) Prior distributions pðXiÞ are sh
11%. (b) After observing someone who has had a stroke (S ¼ s), the distributions are up
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The variable elimination algorithm leverages the network structure
in order to look for an efficient marginalization ordering. While
finding the optimal marginalization ordering is an NP-hard [46]
problem on its own, greedy algorithms tend to work well in prac-
tice. The algorithm for message passing on junction trees [47]
allows for answering a series of queries in only twice the runtime
of a single query. Also, a BN can be represented as a polynomial
[48], thus allowing for efficient inference by evaluating and differ-
entiating the polynomial.

2.4. Approximate inference methods

For complex networks and non-standard local distributions, we
may need to resort to approximate inference. Approximate infer-
ence in general BNs is also NP-hard [49]. A common and broadly
applicable approach is that of particle-based inference or Monte
Carlo simulation. Namely, we use the network to sample a large
number of particles (cases) from the JPD, and then estimate the
probability of interest from the generated sample (e.g., by counting
observed relative frequencies if the variables of interest are dis-
crete). The simplest approach is probabilistic logic sampling [50]
where, given a topological ordering of the nodes, we sample from
a node once we have sampled from, and thus fixed the values of,
its parents. However, if the evidence e is very unlikely, many sam-
pled particles will be discarded since they will not match the evi-
dence, and we would thus need an intractable number of samples.
Likelihood weighting [51,52] mitigates this by fixing the values of,
rather than sampling from, the evidence nodes and weighing each
particle with the likelihood of the evidence given its parents’ val-
ues in the particle. Other techniques are Gibbs sampling and more
general Markov chain Monte Carlo (MCMC) methods.

2.5. Explanation in Bayesian networks

The explanations of BNs can be focused on the model, on the
reasoning process, or on the evidence [37]. While explaining the
model and the reasoning process aim to aid the user, explaining
the evidence studies the use of BNs as a tool for explaining
observed phenomena.

Explaining the model means, in its most basic sense, displaying
it to the user either graphically or verbally [37]. When the net-
work’s graph is too large to fit onto a screen, software tools can col-
lapse subgraphs into special nodes that can be expanded when
needed. Also, arcs can be colored to denote features such as, for
example, the sign of the correlation between a parent and a child
[37,53,165]. The graph semantics, however, are not trivial and,
own as bar charts, for each node Xi . For example, the prior probability of paralysis is
dated as pðXijsÞ and the posterior probability of paralysis is 75%. Figure from [43].
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for example, arrow directionality can be confusing to an untrained
user when it lacks a causal meaning [54]. There are thus tools that
provide textual descriptions of the model and its conditional inde-
pendencies [55].

Understanding the model’s reasoning is critical for user adop-
tion. For example, the Pathfinder lymph diagnosis system [27] pro-
vides simple explanations by showing how the different values x of
a variable X favor one of two competing diagnoses, D1 and D2, in
terms of the weight of evidence [56]; log PðxjD1Þ

PðxjD2Þ. Madigan et al. [57]

also use the weight of evidence to explain the magnitude of the
effect of each finding on the variable of interest. A number of solu-
tions explain the reasoning verbally [e.g.,][58,59], for example with
step-by-step stories that describe the propagation of evidence
while representing probabilities as numbers and/or phrases [55].

The explanation of evidence in BNs is a realization of inference
to the best explanation, or abduction, a reasoning mode considered
common in both science and everyday life [60]. Abduction consists
in choosing the best among a set of competing hypotheses on the
basis of howwell they explain the evidence. In BNs, the hypotheses
correspond to states of unobserved (non-evidence) variables and
best usually means the most probable assignment to either all
(MPE), or some (MAP), of the unobserved variables [24]. Since both
MPE and MAP are overspecified when many of the unobserved
variables are irrelevant to the observed evidence, a number of solu-
tions seek to provide concise explanations with fewer variables
[61–63]. Yuan et al. [64], on the other hand, find concise explana-
tions, consisting of relevant variables, by maximizing the general-
ized Bayes factor instead of the posterior probability. While very
common in BNs, the posterior probability is one of many criteria
for hypothesis selection that are used in the wider context of
abduction. Alternatives include the weight of evidence [56],
explanatory power [65,66], likelihood of evidence [67], and the
product coherence measure [68], with ongoing debate regarding
their merits and shortcomings [69].
2.6. Learning Bayesian networks from data

Learning a BN from a data setD ¼ fx1; . . . ;xNg of N observations
of X involves two steps: (a) learning the DAG G; and (b) learning h,
the parameters of the local conditional distributions. There are two
main approaches to learning G from D: (a) by testing for condi-
tional independence among triplets of sets of variables (the
constraint-based approach); and (b) by searching the space of DAGs
in order to optimize a score such as the penalized likelihood (the
score-based approach).

The prototypical constraint-based algorithm is the PC algorithm
[70]. It begins by establishing that a pair of variables X and Y are
connected in G, without setting the direction of the arc, if it cannot
find a set Z such that X and Y are independent conditionally on Z.
This is established heuristically with sequences of conditional
independence tests for X and Y given S, performed with increas-
ingly large sets S until either: (a) non-rejection of the indepen-
dence hypothesis; (b) reaching a size limit on S. The algorithm
then derives directions for some of the arcs with rules such as
the following: if X and Y are marginally independent (and thus
non-adjacent in G) but not independent given their common
neighbour Z in G, then the arcs are oriented as X ! Z  Y . More
recent algorithms such as HITON [71,72] and Grow-Shrink [73]
use additional heuristics to reduce runtime.

Score-based algorithms have two components: a network score
and a discrete optimization technique (i.e., a search algorithm) that
is used to maximize the score among candidate networks. A typical
score-based search algorithm is hill climbing, a local search which,
starting from some initial DAG G, greedily adds, removes or
reverses arcs as long as that improves the score. Other algorithms
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include the tabu meta-heuristic [74], which allows for score-
degrading operators while, for efficiency, avoiding those that undo
the effect of recently applied ones, and genetic algorithms [75]. The
score-based approaches tend to be more robust [25] than
constraint-based ones, as they may reconsider previous steps in
the search by removing or reversing previously added arcs. A com-
monly used group of network scores is that of penalized log-
likelihood scores, such as the Bayesian information criterion (BIC)
[76].

Given G, learning h is generally straightforward when data are
complete. For discrete variables Xi and PaðXiÞ, we can compute
the Bayesian estimates in closed form by assuming a Dirichlet prior
over h. With all Dirichlet hyper-parameters equal to a,

ĥijk ¼ Nijk þ a
Nij� þ jXXi

ja ; ð2Þ

where Nijk is the number of instances in D such that Xi ¼ k and
PaðXiÞ ¼ j, corresponding to the j-th possible instantiation of
PaðxiÞ;Nij� is the number of instances in which PaðxiÞ ¼ j, while
jXXi
j is the cardinality of Xi. Setting a ¼ 0 in Eq. (2) yields the max-

imum likelihood estimate of hijk. With incomplete data, the param-
eters of local distributions are no longer independent and we
cannot separately maximize the likelihood for each Xi as in Eq.
(2). Optimizing the likelihood requires a time-consuming algorithm
like expectation maximization [77] which does not guarantee con-
vergence to the global optimum.

2.7. Bayesian network classifiers

For BN classifiers [78,79], a common space of structures to
search in is that of augmented naive Bayes [80] models, which fac-
torize PðX;CÞ as

PðX;CÞ ¼ PðCÞ
Yn

i¼1
PðXijPaðXiÞÞ; ð3Þ

where C is the class variable and X the predictors, and C 2 PaðXiÞ for
all Xi and PaðCÞ ¼£.

Models of different complexity arise by extending or shrinking
the parent sets PaðXiÞ, ranging from the naive Bayes [81] with
PaðXiÞ ¼ fCg for all Xi, to those with a limited-size PaðXiÞ [80,82],
to those with unbounded PaðXiÞ [83]. While the naive Bayes can
only represent linearly separable classes [84], more complex mod-
els are more expressive [85]. Simpler models, with sparser PaðXiÞ,
may perform better with less training data, due to their lower vari-
ance, yet worse with more data as the bias due to wrong indepen-
dence assumptions will tend to dominate the error.

The algorithms commonly used to produce the above structures
are generally instances of greedy hill-climbing [82,86], with arc
inclusion and removal as their search operators. Some add node
inclusion or removal [87], thus embedding feature selection [88]
within structure learning. Alternatives include the adaptation
[80] of the Chow-Liu algorithm [89] to find the optimal one-
dependence estimator with respect to decomposable penalized
log-likelihood scores in time quadratic in n.

A special case is multi-dimensional BN classifier [90,91], a BN in
which two or more nodes correspond to the class variables and the
remaining ones to the predictors.

2.8. Dynamic Bayesian networks

Dynamic BNs [92,93] model domains that evolve over time as
discrete-time stochastic processes. Given vector of random vari-
ables Xt ¼ ðXt

1; . . . ;X
t
nÞ at each time slice t ¼ 1; . . . ; T and assuming

a first-order Markovian transition model for the process, i.e., that
pðXt jXt�1; . . . ;X1Þ ¼ pðXt jXt�1Þ, we have that
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pðX1; . . . ;XTÞ ¼ pðX1Þ
YT

t¼2
pðXtjXt�1Þ;

where, pðX1Þ corresponds to the initial conditions and is factorized
according to a prior BN. If we also assume that the process is station-
ary, then pðXt jXt�1Þ does not depend on t and is common for all time
slices. It can then be factorized according to a transition network,
over Xi as

Qn
i¼1pðXijPaðXiÞÞ, where PaðXiÞ may contain nodes from

both the same and the previous time slice. For inference purposes,
we unroll the transition network over all time slices in order to
obtain a standard BN structure. An algorithm for learning dynamic
BNs is the dynamic hill-climbing algorithm [94], which improves a
score of both the prior and the transition networks.

3. Bayesian networks in machine learning

BNs have been widely applied for machine learning in many
fields, ranging from forensic science [95] to bioinformatics [96]
to fault diagnosis [97] and neuroscience [98,43]. We now present
a number of illustrative applications in neuroscience and the
industry.

3.1. Neuroscience

The human nervous system is the most complex biological sys-
tem. In order to effectively detect and respond to changes in the
environment, it is capable of learning, self-awareness, and gives
rise to the intellect. While many fundamental aspects of neuronal
structure and function are well understood, many questions
remain open. Answering them is becoming more urgent, mainly
due to enormous social and economic cost of nervous system dis-
orders. Brain disorders, such as dementia, depression, and addic-
tion, account for 36% of the burden of all disease in high-income
countries [99], with eight million attributable deaths per year
[100]. The monetary cost of brain disorders in Europe was esti-
mated to 798 billion euros in 2010 [101], while that of Alzheimer’s
disease alone in the United States in 2010 was estimated to be
between 157 and 215 billion American dollars [102].

Progressing towards understanding the brain is a monumental
endeavor. To this end, ambitious neuroscience projects have been
launched globally [103] over the last decade or so. These include
the Human Brain Project [104,105] in the European Union, the
Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) initiative [106] and the Allen Institute for Brain Science
in United States of America, and others in Canada, China, Japan,
Korea, and Israel [103,107]. Most of these are extremely large pro-
jects, reflecting the complexity of the task. The Human Brain Pro-
ject, for example, is one of the largest European-funded research
projects ever, with the total funding planned to be around one bil-
lion euros. It is an interdisciplinary effort, including experts in
computer science, physics, and mathematics [105], in addition to
those in neuroscience and related life sciences.

BNs have been widely applied in neuroscience research. Bielza
and Larrañaga[98] review many such applications, including more
than 40 papers on applications in neuroimaging. In particular,
dynamic BNs have been applied to problems in fMRI (dyslexia,
Parkinson’s disease, schizophrenia, dementia in elder subjects),
MRI (mild cognitive impairment) and EEG (motor task). Below
we describe studies tackling classification of cortical interneurons,
the simulation of virtual somas of pyramidal neurons, as well as an
application in neurodegenerative diseases.

A key challenge in neuroscience is the classification of GABAer-
gic interneurons [108]. These neurons constitute around 20–30% of
the neurons in the cerebral cortex and are the main component of
inhibitory cortical circuits (see Fig. 3 for basics of neuron morphol-
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ogy), which in turn are associated with disorders such as epilepsy
[109,110], autism [111], and schizophrenia [112–115]. While high-
throughput generation of data may enable learning a systematic
taxonomy from data in the near future [116–118], by clustering
[119,120] molecular, morphological, and electrophysiological fea-
tures, researchers currently use [e.g.,][121] and refer to established
morphological types such as chandelier, Martinotti, neurogliaform,
and basket [122–125]. Having a model to automatically classify
interneurons [126] into these morphological types could bring
insight and be useful to practitioners [123]. A simple and accurate
model could provide an interpretable mapping from the quantita-
tive characteristics to the types.

A number of studies have approached the problem of interneu-
ron classification with methods based on BNs. They are all based on
a landmark study of consensus among the scientific community on
interneuron classification, in which 42 expert neuroscientists clas-
sified 320 interneurons according to a predefined taxonomy (see
Fig. 4 for the definition of the taxonomy and details on the study).
Since the taxonomy consisted of five morphological features, in
addition to interneuron type, the study produced a data set [133]
of the 320 neurons classified according to six variables (see Fig. 4
for definitions) by each of the 42 neuroscientists. In addition, the
morphologies of 240 out of the 320 interneurons were digitally
reconstructed which enabled studing the supervised classification
of quantified interneuron morphologies into the type and the mor-
phological features [134–136].

In the original study [123], the authors used BNs to study the
classification choices of the neuroscientists (see Fig. 5). In particu-
lar, they learned a BN for each neuroscientist in order to model his
or her reasoning in terms of the six variables. This enabled them to
study, for example, how each expert related the morphological fea-
tures, such as whether the axon was intra- or translaminar, with
the interneuron type. As Fig. 5 shows, these networks let us iden-
tify similarities and differences in the reasoning among experts.
After observing differences among the experts’ BNs, López-Cruz
et al. [137] sought to identify distinct schools of thought among
the neuroscientists. They clustered the experts’ BNs into six clus-
ters and then learned from data a representative BN for each clus-
ter (see Fig. 5), thereby modeling the characteristic reasoning
patterns of its members. The authors then combined the clusters’
BNs into a consensus Bayesian multinet (i.e., a weighted combina-
tion of multiple networks) thus modeling the reasoning patterns of
all 42 experts. They performed inference with this consensus
model in order to, for example, obtain properties of different
interneuron types; for example, Martinotti cells were mainly
translaminar, displaced, and ascending. Note that, while the JPDs
in this setting (six variables) were not prohibitively large in order
to be computationally tractable, they are hardly tractable cogni-
tively for a domain expert, unlike with a BN which gives a compact,
graphical representation of the domain by leveraging conditional
independencies.

A second goal was to predict interneuron type and four mor-
phological features from the digitally reconstructed morphologies.
Mihaljević et al. [134] predicted each of these five variables sepa-
rately with discrete BN classifiers. Unlike in a typical supervised
classification setting, there were up to 42 labels for each instance,
provided by the different neuroscientists. The level of agreement
among experts varied across the cells: while there were 29 neurons
such that at least 35 neuroscientists agreed on their interneuron
type, there were 67 other cells such that no more than 15 of them
agreed on a single type. The authors thus labelled each cell with
the most common among the labels given by the 42 neuroscien-
tists, yet repeated the classification on different subsets of neurons,
formed by filtering out cells below a certain threshold on label reli-
ability, defined as the minimal number of neuroscientists agreeing
on the majority type. The models were accurate, with up to 89.52%



Fig. 3. (a) Neuronal morphology. The basic structural and functional unit of the nervous system is the nerve cell or neuron. There are around 1011 [127] neurons in the human
brain, with 1015 connections among them [128]. A neuron’s function is to receive and integrate information from sensory receptors or other neurons and transmit it to other
neurons or organs. Each neuron has a single cell body, or soma, with branching processes, or neurites, called dendrites and axon, emerging from it. The dendrites receive
chemical signals, or neurotransmitters, from axons of other neurons and transform them into electrical signals. The soma integrates incoming signals and may send a signal to
other neurons, by an electrical potential that travels down the axon and away from the soma. At axon terminals, or boutons, this potential triggers the release of a
neurotransmitter, into the synapse, the region between two adjacent neurons, passing the signal to the post-synaptic neuron. (b) Two main types of cortical neurons. Between
70% and 80% of neocortical neurons are excitatory pyramidal neurons (one arrow in the graphic) [129–131]. These cells are relatively uniform in terms of morphological,
physiological and molecular properties [129]. The remaining 20–30% neurons are interneurons (two arrows in the graphic). They are mostly inhibitory, that is, use the
gamma-amino butyric acid (GABA) as their neurotransmitter, and have short axons that do not leave the cortex. Photomicrograph from Cajal’s preparation of the occipital
pole of a cat stained with the Golgi method, taken from [132].

Fig. 4. Interneuron types and morphological features in the classification scheme by DeFelipe et al. [123]. The scheme contemplates ten interneuron types (a): chandelier,
large basket, horse-tail, Martinotti, arcade, neurogliaform, Cajal-Retzius, common basket, common type, and other (common type and other not shown in the graphic). Other
is meant to be chosen when the neuroscientist finds none of the remaining nine types adequate and prefers to use an alternative name. In addition to interneuron type, the
classification scheme contemplates five high-level morphological features, such as whether or not the axon is restricted to the layer that contains the soma. These features,
termed F1, F2, F3, F4, and F6 (F5 being the previously discussed interneuron type) have the following categories: (F1) intralaminar and translaminar; (F2) intracolumnar and
transcolumnar; (F3) centered and displaced; (F4) ascending, descending, and both; (F6) characterized and uncharacterized. The uncharacterized category of F6 means that a
cell’s reconstruction is not good enough to reliably classify it. When labeling a cell as uncharacterized in feature F6, the neuroscientist cannot annotate it according to any of
the remaining five features, F1-F5. F4 is only applicable for cells that are labeled as translaminar and displaced in F1 and F3, respectively. (b) The web application used to
gather the neuroscientists’ classification choices for the set of 420 interneurons. Figure (a) from [123].
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Fig. 5. Above: BNs for two of the 42 neuroscientists. Bar charts show the propagated probabilities of the remaining features conditioned on the Martinotti type. While the two
neuroscientists agreed on the features X1 and X3 of Martinotti cells, they disagreed in terms of their features X2 and X4: for example, the probability of Martinotti cells being
ascending is 47% in (5) a yet 83% in (5) b. Below: BNs for two clusters of neuroscientists. Bar charts show the marginal probabilities of the variables. Cluster (5) c consisted of
15 experts, with common basket as the mode for the interneuron type, whereas cluster (5) d consisted of seven experts that had a high probability for other, that is,
considered than an alternative interneuron type was appropriate. Figure from [123].
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accuracy for the interneuron type and even higher accuracy for the
morphological features. Fig. 6 illustrates how a tree augmented
naive Bayes can be used to explain the reasoning behind the clas-
sification of a cell, providing insight about the quantitative features
of two interneuron types.

As an altenative to majority labels and data filtering, Mihaljević
et al. [135] used probabilistic class labels while predicting the five
variables at once. They encoded the multi-dimensional ([90]; i.e.,
corresponding to five class variables) class labels with BNs, learn-
ing the network for each neuron from a dataset of up to 42
instances (one for each neuroscientist) and five variables. They
then predicted the labels of a neuron with an instance-based
approach, that is, by combining the BNs labels of its neighbouring
neurons. Fig. 7 shows examples of the true and predicted BNs
labels. Besides high accuracy in predicting all the variables, encod-
ing labels with BNs provided a representation of how the class
variables interact at the single neuron level.

As discussed above, brain disorders impose a severe social and
economic burden on modern societies. After Alzheimer’s disease,
the second most common neurodegenerative disorder is Parkin-
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son’s disease. Borchani et al. [138] used BNs to predict European
Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson’s
Disease Questionnaire (PDQ-39). The EQ-5D is a generic health-
related quality of life (HRQoL) measure consisting of five items —
mobility, self-care, usual activities, pain/discomfort, and anxiety/
depression— with three options for each item —no problems, some
problems and severe problems. PDQ-39, on the other hand, is a
Parkinson disease-specific HRQoL measure, containing 39 ques-
tions that capture the patient’s perception of his or her illness
across eight dimensions such as mobility and emotional well-
being (see Fig. 8 for details). The authors used a dataset of EQ-5D
and PDQ-39 questionnaires from 488 Parkinson’s disease patients
to learn a multi-dimensional BN classifier between the two HRQoL
measures. The authors developed MB-MBC, an algorithm that
learns the classifier by adapting the HITON [71,72] algorithm to
simultaneously learn the Markov blankets of the class variables.
The learned model structure (see Fig. 8) uncovered relationships
among the EQ-5D items and PDQ-39 questions, as well as among
the EQ-5D items themselves. Some PDQ-39 questions were irrele-
vant for predicting EQ-5D items and thus did not appear in the net-



Fig. 6. Illustrating the classification of a neuron with a discrete tree augmented BN clasifier that distinguishes between the Martinotti (MA) and large basket (LB) interneuron
types, learned from 101 of the 240 digital reconstructions used by DeFelipe et al. [123]. The class node is the interneuron type whereas the rest nodes correspond to predictor
variables. Initially, without any evidence on the predictors, a given cell is equally likely to belong to either class (a). If we learn that a neuron has high total length (in the range
27500–39400 lm) and set that as evidence in the network (b), the probability of the neuron being a Martinotti cell increases to 62%. Subsequent observations of the maximal
Euclidean distance to soma (c) and remote bifurcation angle (d) of the neuron further increase this probability, up to 93% in (d). Thus, the practitioner can understand the
models’ prediction and gain insight regarding the quantitative features of the two interneuron types. Figure from [135].

Fig. 7. Example of the true (a) and predicted (c) label BNs (LBNs) for one interneuron. The true network is learned from the 42 neuroscientist’s labels for the interneuron. The
predicted distributions are similar to the true ones for many nodes —e.g., 98% true vs. 93% predicted for IC (‘intracolumnar’, node C2). Some marginal probabilities do differ,
such as that of the NG (neurogliaform) type —45% true vs. 14% predicted; a lot of its probability mass was assigned to the more numerous CT ‘common type’ class.
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work (Fig. 8). The model predicted 71% of the class labels correctly,
outperforming multiple other methods.

Computational modeling of neuronal morphology is a useful
tool for understanding neuronal development and examining rela-
tionships between morphology and neuronal function [139]. Since
digital reconstructions of neurons are relatively scarce —e.g.,
human neurons are mainly extracted for study during surgeries
and post-mortem— such models allow neuroscientists to reason,
make predictions and suggest new hypotheses. Luengo-Sanchez
et al. [140] used BNs to cluster and then simulate of morphologies
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of the human pyramidal somas. They characterized 39 somas with
directional (i.e., involving angles) and linear (Gaussian) variables of
their multiresolutional Reeb graph representations (Fig. 9). They
defined a finite mixture-model based on the extended Mardia-
Sutton density and then learned it with the structural
expectation–maximization algorithm to maximize the BIC score.
They found three clusters and used the RIPPER [141] algorithm
to extract a set of rules that characterize each cluster. The BN clus-
tering model identified a set of probabilistic dependencies among
the variables, showing that, for example, the linear (Gaussian) vari-



Fig. 8. A multi-dimensional BN classifier for mapping the PDQ-39 measures into EQ-5D ones. The EQ-5D variables are shown on top and the PDQ-39 ones below them, with
their labels beginning with ‘pdq’. While there were 39 PDQ-39 questions, grouped into eight domains —mobility, activities of daily living, emotional well-being, stigma, social
support, cognitions, communication and bodily discomfort— only 14 of them —from domains mobility, activities of daily living, emotional well-being, and bodily discomfort—
appear in the network, with each domain represented with a different color. The remaining questions were irrelevant for predicting EQ-5D and are thus omitted from the
model. The arcs suggest dependencies between EQ-5D items and PDQ-39 questions. For example, EQ-5D mobility item is directly associated with nodes pdq1, pdq4, pdq6,
and pdq7, all belong to questions in the mobility domain of the PDQ-39. There were also arcs between the EQ-5D items mobility, self-care and usual activities, revealing
probabilisitc dependence among them. The lack of arcs among the PDQ-39 questions is due to restrictions imposed on the learning algorithm. Figure from [138].

Fig. 9. Computation of linear and directional features. A set of ellipses is first identified, roughly separating the surface of the soma into regions with respect to the geodesic
distance to the apical insertion point, located towards the top of the soma. Each ellipse Bi is defined by its centroid and major BR
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��� and minor Br

i

�� �� axes. The height of each
region is given by the length of the vector hi between the centroids of the ellipses. Vectors hi and hiþ1 define a direction in spherical coordinates from which / and hj are
obtained. Ui and Hi are computed from the perpendicular vector to each ellipse Bi . Figure from [140].
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ables were interrelated in consecutive regions of the soma (Fig. 10).
The authors then used the model to simulate synthetic 3D somas
from each cluster.
3.2. Industry

Larrañaga et al. [142] report an application of Bayesian netwoks
to the automatic detection of possibly defective manufactured
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products for their immediate revision. In particular, they devel-
oped an automated visual inspection system for the quality control
of the heat treatment of steel cylinders with laser beams. They
learned the model from a set of images capturing the laser surface
heat treatment of 32 steel cylinders. Since all 32 cylinders were
correctly processed the authors used them to model the normal
behavior of the system, tagging new processed units as possibly
defective if they were anomalous according to this model.



Fig. 10. The network structure for the clustering of somas. There iare 12 directional (orange) and 31 are linear (green) variables; note that linear nodes cannot be parents of
directional nodes and thus there are no arcs from green to orange nodes. Angular variables h and H are modelled as linear because they are restricted to the ½0;2p� interval
and are thus not circular. The latent (unobserved) variable Z (on top) encodes the assignments to clusters. To avoid cluttering the BN, arcs from Z the each variable are
represented as a single arc from Z to an enclosing box. The structure shows that linear variables are interrelated in consecutive regions, such as Br
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curvature variables h and H are mostly correlated with directional variables or other curvature variables. Figure from [140].
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The data set contained 21,500 images (frames) for each pro-
cessed cylinder and each image had 1024 pixels with values in
the range 0 to 1023 (i.e., the range of colors encoded with 10 bits).
The authors reduced the dimensionality of each image by grouping
Fig. 11. The laser beam moved quickly according to a predefined pattern in order to he
(HAZ) that was recorded by the high-speed thermal camera. The camera recorded 1,000 fr
colors (10 bits per pixel) proportional to the temperature reading. A rotation of the surf
processed cylinder. (a) The laser spot is noticeable at the top right of the image (green c
pattern. The numbers indicate the order in which the different segments of the pattern
adjacent to the edges were considered to be background. Figure from [142].
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correlated and neighbouring pixels into clusters. They identified
nine regions of interest and five background regions that were
ignored in subsequent analysis (Fig. 11). They quantified the tem-
peratures within each region of interest with four variables —the
at the whole surface of the cylinder. This movement produced a heat-affected zone
ames per second over a region of interest of 32 � 32 pixels, with up to 1024 different
ace of each cylinder took 21.5 s and a total of 21,500 frames were output for each
ircle). (b) The spot was programmed to move along the steel surface according to a
were formed. (c) The 14 regions into which the frame was segmented. The regions
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median, the standard deviation, the maximum and the minimum—
and then mapped the obtained values from the range 0 to 1023
into one of ten discrete intervals of width 102 between 0 and 1023.

The authors used BNs to model the density of the laser process.
In particular, they used dynamic BNs to model the sequence of
images over time, assuming a first-order Markovian transition
model. They used the dynamic hill-climbing algorithm to maxi-
mize the BIC score of the prior and transition networks. They
imposed a number of constraints on the learning algorithm, such
as having at most two parents for each variable and only allowing
Fig. 12. Illustration of the regions with variables within the Markov blanket (in blue) of t
shielded the target region from the influence of other regions (in white). As expected, b
region 3, (b) region 4, (c) region 5, (d) region 6, (e) region 7, (f) region 8, (g) region 9, (h
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arcs between variables of the same type (e.g., medians with medi-
ans) across regions. All future image sequences with a larger neg-
ative log-likelihood than any of those observed in the training data
were then to be considered as anomalous, and thus possibly defec-
tive, according to the model.

The authors evaluated the method by simulating two different
types of defects in the 32 normal sequences: (a) defect in the laser
power supply unit, simulated with negative offsets of 3.5% and 4%
to the pixel colors; and (b) camera sensor wear, simulated with
added Gaussian noise to the pixel values. The method correctly
he variables of the target region (in yellow). Knowledge of the state of these regions
oth the regions and their Markov blanket regions were close. Markov blanket of (a)
) region 10 and (i) region 12. Figure from [142].



Fig. 13. The flowchart of a typical evolutionary algorithm. Figure from [149].

Fig. 14. The basic steps of an EDA.
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classified 93.8% of the normal sequences, 78.1% of the anomalies
with a negative offset of 3.5%, 100% of the anomalies with a nega-
tive offset of 4%, and 100% of the camera noise anomalies.

The authors then analysed the transition network to identify
the spatio-temporal properties of the thermal process that were
learned from data. They found that the median, maximum and
minimum were persistent (connected in different time slices) vari-
ables in 85.2% of the cases, which was particularly important for
the median of the regions as the temperature of the HAZ ought
to be stable at a high enough value in order to reach the austenite
phase. Network centrality measures, such as the outdegree and the
reversed PageRank [143,144], indicated that the median was the
most influential type of variable. The authors identified the Markov
blankets of each region (see Fig. 12) —defined as the union of the
Markov blankets of the region’s four variables— thus identifying
nearby regions that affected the state of a particular region while
making it independent from the states of remaining regions. Thus,
a separate characterization of a region could not suffice to model
the thermal properties of the process since there were spatio-
temporal dependencies among regions, induced by the movement
of the laser beam.

4. Bayesian networks in optimization

Optimization problems, such as finding optimal routes for the
vehicles of a transportation company, are common in many
domains. They can be cast as the minimization (or maximization)
of one or more functions, subject to a set of constraints. Many rel-
evant scientific and industrial problems are too complex to be
solved optimally and we can, at best, hope to find a good solution.
This may be done by intelligently searching the enormous space of
possible solutions with meta-heuristic algorithms [38]. One group
of such meta-heuristics are evolutionary algorithms. These algo-
rithms follow a framework inspired by natural evolution
(Fig. 13). Namely, given a fitness function that evaluates the quality
of a solution, the algorithm iteratively evolves a population of can-
didate solutions. Offspring solutions are produced from the fitter
solutions of the population (survival of the fittest), by combining
them (crossover); the offspring then may be randomly altered
(mutation). Usually, the solutions improve over time and search
is stopped at some point, returning the best solution up to that
point. Examples of evolutionary algorithms include genetic algo-
rithms [145], evolutionary strategies [146], evolutionary program-
ming [147] and genetic programming [148]. While most
evolutionary algorithms tend to identify, preserve and effectively
combine partial solutions during the evolution, they may be lim-
ited when certain characteristics are present in the problem. In
particular, the traditional operators such as crossover often do
not properly account for the dependencies among the variables
of the problem, thus ignoring information that could speed up con-
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vergence. Non-linearity, ill-conditioning and deception can pose
significant challenges unless such dependencies are taken into
account.

Probabilistic modeling can account for such dependencies in
order to improve the speed and accuracy of problem solving
[150,151]. Instead of traditional genetic operators, a new genera-
tion of candidate solutions is generated as follows: (1) estimating
a probabilistic model based on a set of candidate solutions (usually
the fitter ones); and (2) sampling the new generation from the
learned probabilistic model. The class of evolutionary algorithms
based on probabilistic modeling is referred to as estimation of dis-
tribution algorithms (EDAs) [39–42]. As an effective optimization
technique, they have been widely applied to complex optimization
problems [e.g.,][152]. Below we describe the basics of EDAs as well
as two applicatons.
4.1. Estimation of distribution algorithms

Fig. 14 shows the basic scheme of an EDA. At iteration t the
algorithm selects a set of solutions St from which to learn the prob-
abilistic model p̂tðxÞ. Since St usually consists of fitter solutions,
p̂tðxÞ is thus an explicit model of promising regions of the search
space. The new generation of solutions Ut is generated by sampling
from p̂tðxÞ.

EDA algorithms are commonly grouped according to the degree
of interaction among variables into the: (a) univariate, (b) bivari-
ate, and (c) multivariate EDAs. Univariate EDAs, such as PBIL
[153], cGA [154] and UMDA [39], assume that all variables are
independent and factorize the JPD as a product of univariate mar-



Fig. 15. Joint modeling of objectives and variables for the 5-objective WFG1 optimization problem [164]. (a) The formulas give a simplified definition of the five objective
functions. There are five objectives and 16 variables in the problem, with four of them especially relevant. Namely, the first four variables determine the position of a solution
in the objective space via shape functions h1 to h4, and this position is then added to a distance parameter a computed from the last 12 variables. (b) Part of the learned
network structure, showing the most significant arcs and their corresponding nodes. The objectives are shown above, in red, and the variables below, in light blue. For
example, the model correctly identified that all four variables influence the value of Q1, as Q1 is not marginally independent of any of the variables X1 to X4. On the other hand,
Q1 is independent of variables X1 to X3 given the other objectives and variable X4. Figure from [162].
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ginal distributions. Bivariate EDAs, such as MIMIC [155], represent
pairwise dependencies between variables, for example with a
chain BN where all variables but one are conditioned on the pre-
ceding variable in the chain. While univariate and bivariate models
can be efficiently and reliably estimated from data, they may be
too simple in some cases. Multivariate EDAs do not necessarily
limit the degree of interactions among variables and can be mod-
elled with unrestricted BNs. Early examples include EBNA [156]
and BOA [157].

Early EDAs were developed for discrete domains, as it is com-
mon in evolutionary algorithms to represent solutions with bit
strings. The most common approach for handling continuous vari-
ables is to model them as Gaussian [158].

4.2. Uni-objective problems

[159] studied whether the characteristics of the networks
learned during the running of an EDA are informative about the
algorithm’s behaviour and the problem’s characteristics. In partic-
ular, they studied whether network metrics such as node eccen-
tricity (maximal shortest path length between a pair of nodes)
and edge betweenness centrality (fraction of all shortest paths that
traverse a given edge) could predict the algorithm’s convergence
and distinguish between problems with many nearly optimal
soluctions and those with few of them. They tested the hypotheses
on three groups of synthetic optimization problems, one of which
was that of protein folding of the simplified HP protein model, a
combinatorial problem consisting in finding a simplified protein
model configuration that minimizes an energy representing the
interaction between hydrophobic (H) and polar (P) residues. From
a dataset of 611 proteins with different folding sequences [160]
and the corresponding network metrics obtained after running
EDAs on each of them, the authors trained supervised classifiers
to predict (a) whether the EDA will converge in 30 iterations;
and (b) whether there are few or many nearly optimal solutions.
The classifiers had a 71% accuracy for predicting convergence and
91% for predicting the existance of many near optimal solutions,
showing that indeed the network metrics were informative.

4.3. Multi-objective problems

Many optimization problems involve multiple, and often con-
flictive, objectives. For example, when designing a product, a com-
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pany might want to maximize its quality while minimizing its
environmental impact. The optimal solution for a multi-objective
optimization problem is not a single solution but a set of Pareto
optimal solutions. A solution is Pareto optimal if no other solution
improves a given objective without degrading at least one other
objective. When applying meta-heuristics, the goal is to approxi-
mate the Pareto optimal set with a uniform diversity across the
set. Since the objectives’ values may give only a partial ordering
over the solutions, properties such as diversity are usually taken
into account to rank the solutions (e.g., by considering distances
in the objective space [161]).

[162] proposed an EDA that models the JPD of objectives and
variables with a BN. This allows capturing not only the dependen-
cies between variables but also (a) among the objectives; and (b)
between the objectives and the variables. One could also use BN
inference to, for example, find the most probable solution given a
specific setting for the objectives. The proposed model is analogous
to a multi-dimensional BN classifier (see Section 2.7), with the
objectives corresponding to class variables (and thus having no
variable parents in the graph) and the variables to predictor vari-
ables. The authors used a greedy hill-climbing search with random
restarts to maximize the BIC score, and assumed that both the vari-
ables and the objectives were Gaussian variables, estimating
parameters with covariance shrinkage [163]. Extensive comparison
to related state-of-the-art algorithms showed that the algorithm
found significantly better approximations to the Pareto set for
many of the considered problems. An analysis of the structures
learned during evolution showed that the algorithm was able to
distinguish between relevant and irrelevant variables for the dif-
ferent objectives, and also to identify dependencies between simi-
lar objectives. Fig. 15 illustates how the algorithm recovered a good
approximation of a synthetic problem with a known structure.
Since multi-objetive optimization involves trade-offs between
objectives that often requires decision-making, the information
uncovered by the model can be valuable to the decision-maker.
5. Conclusions

As artificial intelligence is being increasingly used for high-
stakes applications, it is becoming more and more important that
the models used be interpretable. Bayesian networks offer a para-
digm for interpretable artificial intelligence based on probability
theory. They provide a semantics that enables a compact, declara-
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tive representation of a joint probability distribution over the vari-
ables of a domain by leveraging the conditional independencies
among them. The representation consists of a directed acyclic
graph that encodes the conditional independencies among the
variables and a set of parameters that encodes conditional distri-
butions. This representation has provided a basis for the develop-
ment of algorithms for probabilistic reasoning (inference) and for
learning probability distributions from data. Bayesian networks
are used for a wide range of tasks in machine learning, including
clustering, supervised classification, multi-dimensional supervised
classification, anomaly detection, and temporal modeling. They
also provide a basis for estimation of distribution algorithms, a
class of evolutionary algorithms for heuristic optimization.

We have illustrated the use of Bayesian networks for inter-
pretable machine learning and optimization by presenting applica-
tions in neuroscience, the industry, and bioinformatics, covering a
wide range of machine learning and optimization tasks.
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[53] B. Mihaljević, P. Larrañaga, R. Benavides-Piccione, J. DeFelipe, C. Bielza,
Comparing basal dendrite branches in human and mouse hippocampal CA1
pyramidal neurons with Bayesian networks, Scientific Reports 10 (2020)
18592.

[54] D. Heckerman, D.M. Chickering, C. Meek, R. Rounthwaite, C. Kadie,
Dependency networks for inference, collaborative filtering, and data
visualization, J. Mach. Learn. Res. 1 (2000) 49–75.

[55] M. Henrion, M.J. Druzdzel, Uncertainty in Artificial Intelligence, Elsevier,
1991, pp. 17–32..

[56] I. Good, Weight of evidence: A brief survey, with discussion, Bayesian Stat. 2
(1985) 249–270.

[57] D. Madigan, K. Mosurski, R.G. Almond, Graphical explanation in belief
networks, Journal of Computational andGraphical Statistics 6 (1997) 160–181.

[58] G.F. Cooper, NESTOR: A Computer-Based Medical Diagnostic Aid That
Integrates Causal and Probabilistic Knowledge, Ph.D. thesis, Stanford, 1984..

[59] H.J. Suermondt, Explanation in Bayesian Belief Networks, Ph.D. thesis,
Stanford, 1993..

[60] P. Lipton, Inference to the Best Explanation, Routledge, 2003.
[61] S.E. Shimony, Explanation, irrelevance and statistical independence, in:

Proceedings of the Ninth National Conference on Artificial intelligence-
Volume 1, pp. 482–487..

[62] J. Kwisthout, Most frugal explanations in Bayesian networks, Artif. Intell. 218
(2015) 56–73.

[63] M.J. Flores, J.A. Gámez, S. Moral, Abductive inference in Bayesian networks:
Finding a partition of the explanation space, in: European Conference on
Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
Springer, pp. 63–75..

[64] C. Yuan, H. Lim, T.-C. Lu, Most relevant explanation in Bayesian networks, J.
Artif. Intell. Res. 42 (2011) 309–352.

[65] J.N. Schupbach, J. Sprenger, The logic of explanatory power, Phil. Sci. 78
(2011) 105–127.

[66] V. Crupi, K. Tentori, A second look at the logic of explanatory power, with two
novel representation theorems, Phil. Sci. 79 (2012) 365–385.

[67] L.M. De Campos, J.A. Gámez, S. Moral, Simplifying explanations in Bayesian
belief networks, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 9 (2001) 461–489.

[68] D.H. Glass, Coherence, explanation, and hypothesis selection, The British
Journal for the Philosophy of Science (2018). Axy063..

[69] C. Glymour, Probability and the explanatory virtues, British J. Phil. Sci. 66
(2015) 591–604.

[70] P. Spirtes, C. Glymour, An algorithm for fast recovery of sparse causal graphs,
Soci. Sci. Comput. Rev. 90 (1991) 62–72.

[71] C. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, X. Koutsoukos, Local causal
and Markov blanket induction for causal discovery and feature selection for
classification, Part I: Algorithms and empirical evaluation, J. Mach. Learn. Res.
11 (2010) 171–234.

[72] C. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, X. Koutsoukos, Local causal
and Markov blanket induction for causal discovery and feature selection for
classification, Part II: Analysis and extensions, J. Mach. Learn. Res. 11 (2010)
235–284.

[73] D. Margaritis, Learning Bayesian Network Model Structure from Data, Ph.D.
thesis, Carnegie-Mellon University, 2003..

[74] F. Glover, M. Laguna, Tabu Search, in: P.M. Pardalos, D.-Z. Du, R.L. Graham
(Eds.), Handbook of Combinatorial Optimization, Springer, 2013, pp. 3261–
3362.

[75] P. Larrañaga, M. Poza, Y. Yurramendi, R. Murga, C. Kuijpers, Structure learning
of Bayesian networks by genetic algorithms: A performance analysis of
control parameters, IEEE Trans. Pattern Anal. Mach. Intell. 18 (1996) 912–
926.

[76] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978) 461–
464.

[77] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Ser. B (Methodol.) 39 (1977) 1–38.
663
[78] C. Bielza, P. Larrañaga, Discrete Bayesian network classifiers: A survey, ACM
Comput. Surv. 47 (2014).
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