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Isabel Cuesta,1 Concha Bielza,2 Pedro Larrañaga,2 Manuel Cuenca-Estrella,1 Fernando Laguna,3
Dolors Rodriguez-Pardo,4 Benito Almirante,4 Albert Pahissa,4 and Juan L. Rodríguez-Tudela1*
Servicio de Micologia, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid,1

Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica, Madrid,2
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European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints classify Candida
strains with a fluconazole MIC < 2 mg/liter as susceptible, those with a fluconazole MIC of 4 mg/liter as
representing intermediate susceptibility, and those with a fluconazole MIC > 4 mg/liter as resistant. Machine
learning models are supported by complex statistical analyses assessing whether the results have statistical
relevance. The aim of this work was to use supervised classification algorithms to analyze the clinical data used
to produce EUCAST fluconazole breakpoints. Five supervised classifiers (J48, Correlation and Regression
Trees [CART], OneR, Naïve Bayes, and Simple Logistic) were used to analyze two cohorts of patients with
oropharyngeal candidosis and candidemia. The target variable was the outcome of the infections, and the
predictor variables consisted of values for the MIC or the proportion between the dose administered and the
MIC of the isolate (dose/MIC). Statistical power was assessed by determining values for sensitivity and
specificity, the false-positive rate, the area under the receiver operating characteristic (ROC) curve, and the
Matthews correlation coefficient (MCC). CART obtained the best statistical power for a MIC > 4 mg/liter for
detecting failures (sensitivity, 87%; false-positive rate, 8%; area under the ROC curve, 0.89; MCC index, 0.80).
For dose/MIC determinations, the target was >75, with a sensitivity of 91%, a false-positive rate of 10%, an
area under the ROC curve of 0.90, and an MCC index of 0.80. Other classifiers gave similar breakpoints with
lower statistical power. EUCAST fluconazole breakpoints have been validated by means of machine learning
methods. These computer tools must be incorporated in the process for developing breakpoints to avoid
researcher bias, thus enhancing the statistical power of the model.

The Antifungal Susceptibility Testing Subcommittee of the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST) has recently established the breakpoints for flu-
conazole and Candida spp. (13). EUCAST considers a strain of
a Candida sp. with a fluconazole MIC � 2 mg/liter to be
susceptible, a strain with a fluconazole MIC of 4 mg/liter to be
intermediate in susceptibility, and a strain with a fluconazole
MIC � 4 mg/liter to be resistant. These breakpoints do not
apply to Candida glabrata and C. krusei (13).

The process for establishing breakpoints designed by
EUCAST takes into account pharmacokinetic-pharmacody-
namic data and other factors, such as dosing regimens, toxi-
cology, resistance mechanisms, wild-type MIC distributions,
and clinical outcome data.

The clinical data used in the process of setting breakpoints
for fluconazole were reported in a previous study (12). That
study analyzed, in the classical way, the correlation of MICs
and the proportion between the dose administered and the
MIC of the isolate (dose/MIC) in relationship to the clinical
outcome seen with patients with candidemia and oropharyn-
geal candidosis (OPC) who had been treated with fluconazole.

The results showed that 93.7% (136 of 145 episodes) of infec-
tions due to isolates with fluconazole MICs � 2 mg/liter re-
sponded to fluconazole treatment. A response of 66% (8 of 12
episodes) was observed when the infections were caused by
isolates with a fluconazole MIC of 4 mg/liter and a response of
11.8% (12 of 101 episodes) when the infection was caused by
isolates with a fluconazole MIC � 4 mg/liter. Clinical outcome
data used for setting breakpoints have usually been analyzed
following the 90-60 rule (10). This rule states that infections
due to susceptible isolates respond to therapy approximately
90% of the time, whereas infections due to resistant isolates
respond approximately 60% of the time. However, data mining
tools have been developed that allow better analysis and inter-
pretation of the data. An extraordinary development in con-
temporary computer science is the introduction and applica-
tion of methods of machine learning. These enable a computer
program to analyze automatically a large body of data and
decide what information is most relevant. This information can
then be used to make decisions faster and more accurately.
Machine learning tools for data mining tasks contain imple-
mentations of most of the algorithms for supervised classifica-
tion such as decision trees, rule sets, Bayesian classifiers, sup-
port vector machines, logistic and linear regression, multilayer
perceptrons, and nearest-neighbor methods, as well as met-
alearner methods such as bagging, boosting, and stacking. Ma-
chine learning models are supported by complex statistical
analyses that include such performance measures as sensitivity,
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specificity, false-positive rate, and area under the receiver op-
erating characteristic (ROC) curve, which enable researchers
to assess whether the results have statistical relevance.

The aim of this work was to employ supervised classification
algorithms to analyze the clinical data used to produce
EUCAST fluconazole breakpoints to determine whether or
not the breakpoints chosen are similar to those produced by
these tools.

MATERIALS AND METHODS

Patients and diseases. (i) Candidemia. A total of 126 candidemia patients
treated with fluconazole were recruited from a population-based surveillance
study performed in Barcelona, Spain, during 2002 and 2003 (1). Characteristics
of the patients and analyses of the correlation of the MICs with patient outcomes
have been published previously (12). Briefly, a case was defined as representing
a Candida infection when recovery of any Candida species from blood cultures
was determined. Candidemia that occurred �30 days after the initial case was
considered to represent a new case. Cure was defined by eradication of candi-
demia and resolution of the associated signs and symptoms. Failure was defined
as persistent candidemia despite 4 days of fluconazole treatment. The recom-
mended dose of fluconazole for candidemia is 400 mg/day, but the dose was
adjusted to 200 mg/day when the creatinine clearance was between 10 and 50
ml/min and to 100 mg/day when the creatinine clearance was �10 ml/min. Four
episodes of candidemia were treated with 100 mg of fluconazole/day, 25 with 200
mg/day, 92 with 400 mg/day, 2 with 600 mg/day, and 3 with 800 mg/day (12).

(ii) Oropharyngeal candidiasis (OPC). A total of 110 patients with human
immunodeficiency virus infection in another study had been treated with flucon-
azole for a total of 132 episodes of oral thrush caused by C. albicans (6). Sixty-five
episodes of OPC were treated with 100 mg of fluconazole/day, 44 with a dose of
200 mg/day, and 23 with 400 mg/day (12). Characteristics of the patients and
analyses of the correlation of the MICs with patient outcomes were published
previously (12). Briefly, clinical resolution was defined as the absence of lesions
compatible with oral thrush after 10 days of therapy. Mycological cure was not
evaluated. All episodes were used to evaluate clinical outcome irrespective of the
dose of fluconazole given.

Hence, a total of 258 episodes of Candida infection were available for analysis.
Antifungal susceptibility testing. Antifungal susceptibility testing was per-

formed following the guidelines of the Antifungal Susceptibility Testing Sub-
committee of EUCAST for fermentative yeasts (11). Briefly, fluconazole was
distributed in RPMI medium supplemented with 2% glucose in flat-bottomed
microtitration trays that were inoculated with 105 CFU of yeast/ml, incubated at
35°C, and then read after 24 h at 530 nm using a spectrophotometer. The
endpoint was defined as the concentration that resulted in 50% inhibition com-
pared with the growth seen with the control well. C. krusei ATCC 6258 and C
parapsilosis ATCC 22019 were included for quality control.

Computational methods. The following information for each patient was en-
tered in an Excel database (Microsoft Iberica, Spain): the MIC of the isolate, the
dose/MIC values, and the treatment outcome for the patient (following the
definitions stated above as representative of success or failure). The database
contains 156 successes (60.5%) and 102 failures (39.5%). When required, data
were transformed to log2 values to approximate a normal distribution. To build
up the models, the target variable was the outcome of the infections and the
predictor variables were MIC or dose/MIC.

The models were built up using WEKA software (version 3.4.13) (15) and
Correlation and Regression Trees (CART) software (version 6.0; Salford Sys-
tems, San Diego, CA).

Five classifiers were used to analyze the database: J48 and CART decision
trees, OneR decision rule, Naïve Bayes, and Simple Logistic regression. These
classifiers cover a wide spectrum of methodologies (trees, rules, and probabilistic
classifiers) and were chosen because of their sound theoretical basis and their
suitability for intuitive interpretation. The main characteristics of the classifiers
are as follows.

J48 and CART decision trees. A decision tree basically defines at its nodes a
series of tests of predictor variables organized in a tree-like structure. Each
terminal node (called a “leaf”) gives a classification that applies to all instances
that reach the leaf, after being routed down the tree according to the values of
the predictors tested in successive nodes. The tree is constructed by recursively
splitting the data into smaller and smaller subsets so that after each split the new
data subset is purer (i.e., represents less entropy) than the old data subset. The
J48 algorithm is the Weka implementation of the C4.5 decision tree (9), which is

an outgrowth of the basic original ID3 algorithm. It incorporates a method for
postpruning the tree to avoid overfitting. A default of 25% for the confidence
level for the error rate was kept. The CART system was proposed by Breiman et
al. (2). This system is characterized by binary-split searches, automatic self-
validation procedures, and surrogate splitters. The CART method used to build
up the model was Gini together with the minimum-cost tree, regardless of tree
size.

OneR (4) is a simple classification rule. It is a one-level decision tree expressed
as a set of rules testing only one particular predictor variable. The classification
given to each branch is the class label that occurs most often in the data. The
predictor variable chosen is the one that produces rules with the smallest number
of errors, which are computed as the number of instances that do not represent
the majority class.

The Naïve Bayes classifier (3) is a simple probabilistic classifier based on
applying Bayes’s theorem with strong (naïve) independence assumptions. A
Naïve Bayes classifier assumes that given the class variable, the predictor vari-
ables are conditionally independent.

The Simple Logistic method builds logistic regression models, i.e., a linear
model based on a transformed target variable determined using the logit trans-
formation (5). The weights in the linear combination of the predictor variables
are calculated from the training data and are used to maximize the likelihood
function.

Every classifier develops a model when it searches for the MIC or the dose/
MIC that best splits the populations of successes and failures. Tenfold cross-
validation was the method used to estimate the performance of each classifier.
This was assessed by determining values for (i) sensitivity, (ii) specificity, (iii) the
false-positive rate or 1-specificity, (iv) the area under the ROC curve, and (v) the
Matthews correlation coefficient (MCC). This coefficient is a measure of
the quality of two-class classifications. It takes into account true and false posi-
tives and negatives and is generally regarded as a balanced measure which can be
used even when classes are of very different sizes. Analysis using the MCC
returns a value between �1 and �1. A coefficient of �1 represents a perfect
prediction, 0 an average random prediction, and �1 an inverse prediction.

RESULTS

As stated above, the cohort with oral thrush and candidemia
was previously described in detail (6, 12). Therefore, the re-
sults of the present study represent only the performance of
the classifiers and their statistical power.

Table 1 shows the values for the MICs predicting failure for
each classifier and the sensitivity, specificity, false-positive rate,
area under the ROC curve, and MCC index for the cohorts of
patients with OPC and candidemia.

All classifiers yielded good results, as the OPC data set MCC
values show. J48 and Naïve Bayes analyses selected a MIC of
�2 mg/liter and CART, OneR, and Simple Logistic a MIC of
�4 mg/liter for predicting failures. The best values for the area
under the ROC curve were those obtained with Naïve Bayes
(0.94) and Simple Logistic (0.95), but those methods had a
higher false-positive rate than CART (Table 1). However, for
candidemia analyses, the results were poor. Three of the clas-
sifiers, J48, OneR, and Simple Logistic, were unable to deter-
mine a MIC that could split the populations of successes and
failures (Table 1). The CART and Naïve Bayes methods found
values of �4 mg/liter and �2 mg/liter, respectively, to be best
for predicting failures, although the statistical power was lim-
ited. The area under the ROC curve for the Naïve Bayes
method was 0.48 and for CART was 0.63 (Table 1). When the
whole set was analyzed, MICs similar to those found with the
OPC predictive model were obtained. CART and Naïve Bayes
were the classifiers showing the same results for both OPC and
candidemia. The areas under the ROC curves were 0.89 and
0.91, respectively, but the false-positive rate was slightly lower
for CART (8% versus 13%).

Table 2 shows the dose/MIC values predicting treatment

2950 CUESTA ET AL. ANTIMICROB. AGENTS CHEMOTHER.

 at C
N

IC
 Library on June 25, 2009 

aac.asm
.org

D
ow

nloaded from
 

http://aac.asm.org


success for each classifier and the values for sensitivity, speci-
ficity, false-positive rate, area under the ROC curve, and MCC
index for the cohort of patients with OPC and candidemia.

All classifiers yielded a dose/MIC value that predicted treat-
ment success for the OPC data set. In all cases, the value for
dose/MIC was �37.5 and that for the area under the ROC
curve was �0.85 (Table 2).

The classification trees generated by CART and J48 for the
OPC data set were rather complex (Fig. 1 shows the CART);
the values for the area under the ROC curve were 0.98 and
0.95, with false-positive rates of 0 and 28%, respectively (Table
2). Figure 1 shows the trees produced by CART for the OPC
data set and for the OPC and candidemia datasets combined.
In the OPC cohort, none of the patients responded with a
dose/MIC � 18.75. With a dose/MIC � 18.75, there were 14
(24.6%) failures and 43 (75.4%) successes. All patients with a

dose/MIC � 75 were successes. The percentage of failures
seen with a dose/MIC between 18.75 and 37.5 was 57.9% (11
patients) and with a dose/MIC between 37.5 and 75 was 42.9%
(3 patients) (Fig. 1A). The CART dose/MIC results for the
candidemia cohort also showed a value of �75 as the splitter.
In this case, it was a two-leaf tree with a 4% false-positive rate
but a limited sensitivity of 31%. The area under the ROC curve
was 0.63.

Similar values were obtained with the J48 tree for the OPC
data set. No response was obtained when the dose/MIC was
�12.5, and no failures were detected when the dose/MIC
was �50.

For the whole data set, only CART results were considered
because the breakpoints for the OPC and candidemia cohorts
were identical. The tree is displayed in Fig. 1B. Only 6% of
failures were detected with a dose/MIC � 75, whereas 85.3%

TABLE 1. Sensitivity, specificity, false-positive rate, area under the ROC curve, and MCC for MIC values as a predictor of failure

Disease(s) Classifier MIC for failures
(mg/liter)

Sensitivity
(%)

Specificity
(%)

False-positive
rate (%)

Area under
ROC curve MCC

OPC J48 �2 97 72 28 0.81 0.74
CART �4 96 83 17 0.89 0.81
OneR �4 97 72 28 0.84 0.74
Naı̈ve Bayes �2 99 74 26 0.94 0.79
Simple Logistic �4 95 77 23 0.95 0.75

Candidemia J48 NCa

CART �4 31 96 4 0.63 0.31
OneR NC
Naı̈ve Bayes �2 31 96 4 0.48 0.31
Simple Logistic NC

All J48 �4 87 92 8 0.86 0.80
CART �4 87 92 8 0.89 0.80
OneR �4 87 92 8 0.89 0.80
Naı̈ve Bayes �2 91 87 13 0.91 0.77
Simple Logistic �2 91 87 13 0.91 0.77

a NC, not calculated (the classifier did not find a value for splitting the populations of successes and failures).

TABLE 2. Sensitivity, specificity, false-positive rate, area under the ROC curve, and MCC for dose/MIC values as a predictor
of treatment success

Disease(s) Classifier Dose/MIC
for success

Sensitivity
(%)

Specificity
(%)

False-positive
rate (%)

Area under
ROC curve MCC

OPC J48 �50.0a 93 72 28 0.95 0.68
CART �75.0a 84 100 0 0.98 0.80
OneR �37.5 97 81 19 0.89 0.81
Naı̈ve Bayes �41.7 97 81 19 0.85 0.81
Simple Logistic �38.8 98 72 28 0.97 0.76

Candidemia J48 NCb

CART �75.0 31 96 4 0.63 0.34
OneR NC
Naı̈ve Bayes �1,578.0 0 100 0 0.56 0.0
Simple Logistic NC

All J48 �50.0 87 90 10 0.87 0.77
CART �75.0 91 90 10 0.90 0.80
OneR �37.5 86 93 7 0.90 0.80
Naı̈ve Bayes �674.0 91 59 41 0.86 0.50
Simple Logistic NC

a The J48 and CART classifiers produced complex trees for dose/MIC versus outcome (Fig. 1). The initial values splitting the tree for successes and failures were
12.5 and 18.75, respectively. Therefore, the table shows the dose/MIC values predicting the absence of failures.

b NC, not calculated (the classifier did not find a value for splitting the populations of successes and failures).
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of failures were observed when the dose/MIC was �75. The
area under the ROC curve was 0.90, and the false-positive rate
was 10% (Table 2).

DISCUSSION

Machine learning methods are being used in genomics, pro-
teomics, microarrays, system biology evolution, and text min-
ing (7). However, this is the first time that they have been
applied to validation of antifungal breakpoints. The 90-60 rule
has defined the accuracy of antimicrobial susceptibility testing
for predicting the outcome of bacterial infections. This rule
was adopted by mycologists because the clinical correlation
studies analyzed showed similar predictive patterns (10). How-
ever, the correlation of MIC values or pharmacodynamic pa-
rameters with patient outcome should include statistical eval-
uations similar to those used with any diagnostic tool. Machine
learning methods represent an opportunity to use statistical
theory for building a model using a data set. However, it is
crucial to find the optimal solution; to achieve such a solution,
several classifiers must be employed for comparisons of the
models obtained with each one. In this work, five classifiers

(J48, CART, OneR, Naïve Bayes, and Simple Logistic) were
compared to identify which values for MIC or dose/MIC split
the populations of successes and failures. The statistical power
of each model has been evaluated by means of analyses of the
sensitivity, specificity, false-positive rate, area under the ROC
curve, and MCC index.

The classifiers choose the MIC that best split the popula-
tions of successes and failures. This value is presented as ��
mg/liter for successes and �x mg/liter for failures. However,
breakpoints usually have three categories, namely, susceptible,
intermediate (with susceptibility dependent on dose level), and
resistant, presented as �� mg/liter for susceptible isolates, �x
and �y mg/liter for intermediate isolates, and �y mg/liter for
resistant isolates. The definition for the intermediate category
implies that an infection due to the isolate may be appropri-
ately treated in body sites where the drugs are physically con-
centrated or when a high dosage of drug can be used. It also
indicates a buffer zone that should prevent small, uncontrolled,
technical factors from causing major discrepancies in interpre-
tations. The main target of any susceptibility testing is to iden-
tify resistant strains or, in other words, to identify the drugs

FIG. 1. (A) CART showing values for dose/MIC versus outcome for patients with OPC; (B) CART for both datasets (OPC and candi-
demia).
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that are less likely to eradicate the infection (14). Thus, a very
major error is considered to have occurred when a resistant
strain is characterized as susceptible in cases in which a patient
has been treated with a drug lacking activity against the mi-
croorganism causing the infection. On the other hand, a major
error is defined as having occurred when a susceptible strain is
classified as resistant. In summary, the aim is to minimize very
major errors; as a consequence, the rules for any analysis trying
to predict the outcome of patients should be based on failures.
The crude mortality rate for Candida bloodstream infections is
40% (8); thus, inappropriate treatments must be avoided by all
possible means.

All classifiers were able to yield a predictive model for the
OPC data set. The CART method gave the best statistical
power for a MIC � 4 mg/liter for detecting failures, although
the rest of classifiers also exhibited high statistical power (Ta-
ble 1). However, for candidemia the scenario was completely
different. CART and Naïve Bayes methods were able to dis-
cover a MIC value that split the populations, but the statistical
power was limited (although it was slightly better for CART).

Regarding dose/MIC targets, results were similar for the
OPC data set. All classifiers were able to determine a dose/
MIC value that split the populations of successes and failures,
with areas under the ROC curves above 0.85. However, for
candidemia, only CART produced the same dose/MIC value as
that determined for the OPC data set, but the CART deter-
mination had little statistical power (Table 2).

The determinations for the two cohorts had different values
with respect to statistical power, and this merits an explana-
tion. For the OPC cohort, 85 cases had a MIC � 4 mg/liter, but
there were only 4 cases for candidemia that showed this value.
The lack of strains with MIC � 4 mg/liter in the candidemia
cohort explains the limited statistical power of the models.
However, the models for the OPC and candidemia datasets
gave the same values for MIC and for dose/MIC for at least
one classifier. Therefore, the results obtained for the whole
data set can be considered if the models produce the same
MIC or dose/MIC when the datasets are analyzed separately,
despite candidemia and OPC representing quite different clin-
ical situations. If several models satisfy this circumstance, the
statistical power of the analyses must be taken into account.

The CART model produced identical target values for the
two datasets and the highest statistical power in satisfying both
sets of circumstances. The CART model gave a MIC � 4
mg/liter as the breakpoint of resistance, with a sensitivity of
87%, a false-positive rate of 8%, an area under the ROC curve
of 0.89, and an MCC index of 0.80 (Table 1). In addition, a
dose/MIC � 75 is proposed as the target to achieve treatment
success. This means that a fluconazole dose of 400 mg/day will
cover all strains with a fluconazole MIC of 4 mg/liter or less.
The sensitivity of this target is 91%, with a false-positive rate of
10%, an area under the ROC curve of 0.90, and an MCC index
of 0.80 (Table 2).

In summary, the fluconazole breakpoints (susceptible, �2
mg/liter; intermediate, 4 mg/liter; resistant, �4 mg/liter) deter-
mined by the EUCAST Antifungal Susceptibility Testing Sub-
committee have been validated by means of machine learning
methods. This proves that these computer tools must be incor-
porated into the process for developing breakpoints because
such an approach completely avoids researcher bias, thus en-

hancing the statistical power of the model. The use of machine
learning tools allows the evaluation of antimicrobial suscepti-
bility results in a manner similar to that used with other diag-
nostic tools.
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7. Larrañaga, P., B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A.
Lozano, R. Armananzas, G. Santafe, A. Perez, and V. Robles. 2006. Machine
learning in bioinformatics. Brief. Bioinform. 7:86–112.

8. Pfaller, M. A., and D. J. Diekema. 2007. Epidemiology of invasive can-
didiasis: a persistent public health problem. Clin. Microbiol. Rev. 20:133–
163.

9. Quinlan, J. R. 1993. C4.5: programs for machine learning. Morgan Kauf-
mann Publishers Inc., San Francisco, CA.

10. Rex, J. H., and M. A. Pfaller. 2002. Has antifungal susceptibility testing come
of age? Clin. Infect. Dis. 35:982–989.

11. Rodriguez-Tudela, J. L., M. C. Arendrup, F. Barchiesi, J. Bille, E. Chrys-
santhou, M. Cuenca-Estrella, E. Dannaoui, D. W. Denning, J. P. Don-
nelly, F. Dromer, W. Fegeler, C. Lass-Florl, C. Moore, M. Richardson, P.
Sandven, A. Velegraki, and P. Verweij. 2008. EUCAST definitive docu-
ment EDef 7.1: method for the determination of broth dilution MICs of
antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 14:398–
405.

12. Rodríguez-Tudela, J. L., B. Almirante, D. Rodriguez-Pardo, F. Laguna, J. P.

VOL. 53, 2009 DATA MINING FOR FLUCONAZOLE BREAKPOINTS 2953

 at C
N

IC
 Library on June 25, 2009 

aac.asm
.org

D
ow

nloaded from
 

http://aac.asm.org


Donnelly, J. W. Mouton, A. Pahissa, and M. Cuenca-Estrella. 2007. Corre-
lation of the MIC and dose/MIC ratio of fluconazole to the therapeutic
response of patients with mucosal candidiasis and candidemia. Antimicrob.
Agents Chemother. 51:3599–3604.

13. Rodrı́guez-Tudela, J. L., J. P. Donnelly, M. C. Arendrup, S. Arikan, F.
Barchiesi, J. Bille, E. Chryssanthou, M. Cuenca-Estrella, E. Dannaoui, D.
Denning, W. Fegeler, P. Gaustad, N. Klimko, C. Lass-Florl, C. Moore, M.

Richardson, A. Schmalreck, J. Stenderup, A. Velegraki, and P. Verweij.
2008. EUCAST technical Note on fluconazole. Clin. Microbiol. Infect. 14:
193–195.

14. Sanders, C. C. 1991. ARTs versus ASTs—where are we going? J. Antimi-
crob. Chemother. 28:621–623.

15. Witten, I. H., and E. Frank. 2005. Data mining: Practical machine learning
tools and techniques. Elsevier, San Francisco, CA.

2954 CUESTA ET AL. ANTIMICROB. AGENTS CHEMOTHER.

 at C
N

IC
 Library on June 25, 2009 

aac.asm
.org

D
ow

nloaded from
 

http://aac.asm.org

