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Abstract

Background: The challenge of classifying cortical interneurons is yet to be solved. Data-driven classification into
established morphological types may provide insight and practical value.

Results: We trained models using 217 high-quality morphologies of rat somatosensory neocortex interneurons
reconstructed by a single laboratory and pre-classified into eight types. We quantified 103 axonal and dendritic
morphometrics, including novel ones that capture features such as arbor orientation, extent in layer one, and
dendritic polarity. We trained a one-versus-rest classifier for each type, combining well-known supervised classification
algorithms with feature selection and over- and under-sampling. We accurately classified the nest basket, Martinotti,
and basket cell types with the Martinotti model outperforming 39 out of 42 leading neuroscientists. We had moderate
accuracy for the double bouquet, small and large basket types, and limited accuracy for the chandelier and bitufted
types. We characterized the types with interpretable models or with up to ten morphometrics.

Conclusion: Except for large basket, 50 high-quality reconstructions sufficed to learn an accurate model of a type.
Improving these models may require quantifying complex arborization patterns and finding correlates of
bouton-related features. Our study brings attention to practical aspects important for neuron classification and is
readily reproducible, with all code and data available online.
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Background
Although GABAergic interneurons constitute only
10–30% of the neurons in the neocortex they are
highly diverse with regards to morphological, electro-
physiological, molecular, and synaptic properties [1–8].
Most researchers consider that interneurons can be
grouped into types [9] with much less variability within
types than among them. High-throughput generation of
data is expected to enable learning a systematic taxonomy
within a decade [10], by clustering [11, 12] molecular,
morphological, and electrophysiological features. Cur-
rently, however, researchers use (e.g., [13],) and refer
to established morphological types such as chandelier
(ChC), Martinotti (MC), neurogliaform (NGC), and
basket (BA) [6, 8, 14, 15]. These types are identified on
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the basis of the target innervation location —e.g., the
peri-somatic area for basket cells— and somatodendritic
and axonal morphological features. The latter can be
subjective and lead to different classifications: e.g., while
[16] distinguish between large, nest, and small basket cell
types, based on features such as axonal arbor density and
branch length, [14] only distinguish between large and
common basket types. There is thus no single catalogue
of types, and the different classification schemes [6, 14]
only partially overlap. There is, however, consensus on
the morphological features of the ChC, MC, and NGC
types [14].
Using a trained model to automatically classify

interneurons into these morphological types [17] could
bring insight and be useful to practitioners [14]. A suf-
ficiently simple and accurate model would provide an
interpretable mapping from the quantitative characteris-
tics to the types, such as, for example, the classification
tree [18] model by [19] relating mRNA expression to
anatomical type. Unlike classification by an expert, a
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classifier’s assignment of an interneuron into a particular
type can be understood by analyzing the model, and many
models can quantify the confidence in their decision.
Identifying cells that the model cannot reliably classify
into any of the a priori known types might lead to refining
the classification taxonomy, as these cells might belong to
a novel type, or suggest that the boundary between a pair
of types is unclear if the model finds many interneurons
very likely to belong to either type. Sufficiently accurate
models could be used by all practitioners to ‘objectively’
classify interneurons, rather than each of them assigning
their own classification. Learning such models may help
enable future unsupervised type discovery by identi-
fying and fostering the development and definition of
useful morphometrics. Such models can be trained in a
supervised fashion [20–22], with the cells pre-classified
(labeled) into a number of a priori specified types. With
thousands of neuronal morphology reconstructions
[23, 24] available at online repositories such as Neuromor-
pho.org [25, 26] and the Allen Brain Cell Types Database1,
this seems more attainable than ever, especially for the
rodent brain.
There are, however, practical obstacles and aspects to

consider when learning such models. First, it is impor-
tant that class labels (i.e., the a priori classification) are
assigned according to well-established criteria, to avoid
learning idiosyncrasies of the annotating neuroscientist.
Second, reconstructions at Neuromorpho.org are often
incomplete (e.g., insufficient axonal length or interrupted
axons), lack relevant metadata, such as the cell body’s
cortical area and layer, and there is a lot of variability if
combining data across species, age, brain region [4], as
well as histological, imaging, and reconstruction proto-
col [27–29], whereas focusing on a homogeneous data
set shrinks the sample size. Third, infinitely many mor-
phometrics [30] —variables that quantify morphological
features— can be computed and their choice will influ-
ence the model [31]. While the Petilla convention [9]
provided a reference point by identifying a set of fea-
tures to distinguish interneuron types, only some of them
are readily quantified with software such as L-Measure
[32] and Neurolucida Explorer (MicroBrightField), as
many either rely on often-missing metadata (e.g., laminar
extent), or are vaguely defined (e.g., ‘dense plexus of highly
branched axons’). Indeed, researchers have often resorted
to quantifying interneurons with custom-computed
morphometrics [13, 33–35].
In the present study we learned models from 217

high-quality reconstructions, namely two-week-old male
rat hind-limb somatosensory cortex interneurons, recon-
structed at the Laboratory for Neural Microcircuitry at
the École Polytechnique Fédérale de Lausanne [36]. Each
cell was pre-classified into one of eight morphological
types described in [6]2. With only seven ChC and 15

bitufted (BTC) —yet as many as 123 BA and 50 MC—
cells, the sample was insufficient to accurately distinguish
each of the eight types, yet the homogeneity and quality
of the data, along with a careful selection of morpho-
metrics and a comprehensive machine learning approach,
allows for establishing a baseline classification. Although
the class labels were assigned following clear criteria, they
came from a single laboratory, and we thus contrasted
them (for 20 cells) with alternative labels provided by 42
leading neuroscientists that participated in [14]. We also
looked for morphology reconstruction issues whichmight
distort the morphometrics. We trained a model for each
type in a one-versus-all fashion (e.g., ChC or not ChC;
see [37],). Importantly, we developed custom R [38] code
to quantify a number of Petilla features, including those
regarding: arbor shape and direction; dendritic polarity;
the presence of arborization patterns typical of the MC
and ChC types; and translaminar extent [34], which we
estimated usingmetadata on laminar thickness and soma’s
laminar location (i.e., which layer contained the soma).
We complemented them with standard axonal and den-
dritic morphometrics [30], such as the mean branching
angle and mean terminal branch length, computed with
the NeuroSTR library3. For each classification task (e.g.,
ChC or non-ChC), we ran nine well-known supervised
classification algorithms [20, 21], such as random forest (
[39],) and lasso-regularized logistic regression [40]. As a
prior step, we applied univariate and multivariate feature
selection [41, 42] and sampled the training data to deal
with class imbalance (e.g., there were seven ChC and 210
non ChC cells; see [43, 44],). We validated the MC mod-
els against the classification by 42 neuroscientists from
[14] and illustrated how cells commonly misclassified
by different models [45] may correspond to atypical
MC morphologies4. The study can be easily reproduced
[46–48] as all code and data are available5.

Morphological classification
Since the early studies of Santiago Ramón y Cajal it has
generally been assumed that interneurons belong to dis-
tinct classes [2, 49–51]. There is, however, no universally
accepted catalog of such classes [9, 14]. [6] provided
a widely cited morphological classification scheme for
inhibitory interneurons in layers L2/3 to L6. It specifies
nine distinct types (see Fig. 1 for a listing and acronym
definitions) on the basis of axonal and dendritic features,
including fine-grained ones such as bouton distribution.
This scheme is often refined (e.g., [7, 13],) by adding a
layer prefix to each type (e.g., L23_MC, L4_MC, etc.) for
a total of 4 × 9 = 36 types. [14] proposed an alternative,
pragmatic classification scheme, based only on high-level
patterns of axonal and dendritic arborization. It partially
overlaps with the [6] scheme, sharing the NGC, ChC, and
MC types6. In [14] 42 leading neuroscientists classified a
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Fig. 1 Examples of the eight morphological types from [6] for which we learned supervised models. The types are: bitufted (BTC); chandelier (ChC);
double bouquet (DBC); large basket (LBC); Martinotti (MC); nest basket (NBC); small basket (SBC), and the compound basket (BA) type, composed of
NBC, LBC, and SBC cells. Neurogliaform (NGC) and bipolar (BP) types not shown as we omitted them from supervised classification, because we had
only three cells of each. Typical features, according to [6], include: bitufted dendrites (BTC); sharply branching axons and low bouton density (LBC);
and axons with spiny boutons, reaching L1 (MC); and vertical rows of boutons (ChC). Axons are drawn in blue with dendrites and somata in red.
Dashed green lines indicate layer boundaries from the rat hind-limb somatosensory cortex. There are 100 μm between consecutive grid lines

set of interneurons by looking at 2D and 3D morphology
images (they also knew the layer containing the soma)
and found that the ChC and, to a lesser degree, MC
and NGC types could be identified from high-level mor-
phology alone, as the neuroscientists largely agreed when
deciding whether or not a cell was a member of these
types.

Digital reconstructions
A typical neuronal morphology reconstruction [23] is a
sequence of connected conical frusta [52], called seg-
ments (or compartments), each characterized by six val-
ues: the Euclidean coordinates (X, Y and Z) and radius
of its terminating point, all given in μm; the identity
of its parent segment; and its process type (soma, den-
drite or axon); with the soma’s centroid usually at coor-
dinates (0, 0, 0). A branch is the sequence of segments
between two bifurcation points (i.e., terminal point of a

segment having multiple child segments), while linked
branches form an arbor. The reconstructions are most
commonly traced by hand [23] and there is substantial
inter-operator variability [27], especially regarding fine-
grained properties, such as dendritic and axonal thickness
and local branching angles, while bouton locations are sel-
dom included. In addition, histological processing of brain
slices makes the tissue shrink, increasing arbor tortuos-
ity (decreasing reach while maintaining total length) [53].
Current efforts to improve and standardize automatic
reconstruction, such as BigNeuron [29] may remove
reconstruction-specific differences, increasing the usabil-
ity of morphologies produced.

Morphometrics
The Petilla convention [9] established a set of morpholog-
ical features that distinguish cortical interneuron types.
They include characteristics such as: branching angles;
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axon terminal branch shape (curved / straight); bou-
ton density and clustering patterns; dendritic polarity;
whether the axon is ascending or descending; whether it
is intra- or trans-laminar; or presents distinctive patterns
of arborization, such as ‘bundles of long, vertical branches
or tufts’ or ‘dense plexus of highly branched axons’. Many
of these correspond to standard neuronal morphomet-
rics (e.g., branching angles) or can be quantified rather
directly (e.g., one can compute the tortuosity of termi-
nal branches). Others either a) are often impossible to
quantify, since relevant data (e.g., bouton density) may be
missing from the digital morphology reconstruction; b)
can only be approximated (e.g., translaminar extent) as the
data is often incomplete (we often only know the soma’s
layer, not the position of the soma within the layer); or c)
are vaguely defined (e.g., ‘dense plexus of highly branched
axons’).
Standard neuronal morphometrics [30] are either met-

ric (e.g., branch length) or topological (partition asymme-
try; [54],), and are computed either at the whole arbor(s)
level (e.g., height) or for a part of the tree, such as a branch
or a bifurcation (e.g., branch length); the latter are then
quantified with summarizing statistics across the arbor(s)
(e.g., mean and maximal branch length). These morpho-
metrics can be computed with software such as the free
L-Measure [32], the commercial Neurolucida Explorer
(MicroBrightField), and open-source alternatives being
actively developed such as NeuroSTR and NeuroM7. L-
measure provides 42 analyses of morphology, with five
summary statistics per analysis; 19 out of the 42 analy-
ses depend on arbor diameter or local bifurcation angles,
which often differ across laboratories [27, 28], and it seems
to assume bifurcating branches, although multifurcations
can occur [55].
Researchers have often quantified interneurons with

custom-implemented morphometrics such as: the mean
X coordinate of the axon (e.g., [13],); 2D (X and Y)
axonal ‘tile surface’ and density [35]; the extent of axonal
arborization in L1 [34]; features derived from 2D axonal
and dendritic density maps [7]; dendritic polarity [33];
estimates of translaminar extent and of the radial (ascend-
ing or descending) direction of arborization [56]; or the
position of the convex hull’s centroid as a proxy for arbor
orientation and extent [35, 56].

Method
Here we provide an overview of the applied methodology.
Details, such as the definitions of morphometrics, are
provided in Additional file 1.

Data
We used 228 hind-limb somatosensory cortex interneu-
ron morphologies from two-week-old male Wistar (Han)
rats. These cells were previously reconstructed by the

Laboratory for Neural Microcircuitry and then used by
[13] for simulating a cortical microcircuit8. They cor-
rected shrinkage along the Z-axis, while shrinkage along
the X and Y axes was of approximately 10%. They classi-
fied the cells into 36 layer L2/3 to layer L6 morphological
types of inhibitory neurons, based on their soma’s layer
and anatomical features described in [6, 16, 57], updat-
ing these criteria with a few laminar specificities: e.g., L6
MC cells were unique in that they did not reach L1, but
‘had a second axonal cluster formed below L1’ ( [13],page
2 in the supplementary material). For each cell, we knew
which layer contained the soma and had estimates of
mean and standard deviation of cortical layers’ thickness
(see Table S3 in the Additional file 1). We had no data
on fine-grained features related to boutons and dendritic
spines. We merged the interneuron types across layers
(e.g., we considered L23_MC and L4_MC cells as mem-
bers of a single MC class) into the nine morphological
types defined by [6].
We had an alternative classification for 79 of our cells

provided by 42 neuroscientists that participated in the
study by [14], who were shown 2D and 3D images of the
cells and were told the layer containing the soma, and clas-
sified them following the scheme by [14]. Among these,
we used the 20 cells9 classified in our data —that is, by
[13]— as MC, ChC, and NGC —the three types common
to both classification schemes— to contrast the neurosci-
entists’ labels to ours, but we did not use them to train the
models. We will reserve the term ‘our labels’ to the labels
by [13] which we trained the models with.
For supervised classification, we omitted the BP and

NGC types, as we had only three examples of each and
formed a compound type —basket (BA)— by merging the
NBC, LBC, and SBC cells. We also omitted five cells with
morphology issues: three cells whose axonal arborization
was interrupted, and two with short axons (2500 μm and
2850 μm)10, thus obtaining the final sample of 217 cells
from eight interneuron types (seven ‘base’ types plus the
compound BA type) used for supervised classification (see
Fig. 2).11

Morphometrics
We computed a total of 103 axonal and dendritic morpho-
metrics, 48 of which were custom-quantified Petilla [9]
features . The custom-implemented morphometrics cover
a) arbor shape, direction, density and size; b) laminar
distribution; c) dendritic polarity and displacement from
axonal arbor; and d) the presence of arborization patterns
typical of the MC, ChC, and LBC types. We determined
arbor orientation with principal component analysis, fol-
lowing [58]. We quantified laminar distribution as the
probability of the arbor reaching at least two layers (one
being its soma’s home layer), given that the soma’s vertical
position within its layer was unknown and that laminar
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Fig. 2 Frequencies of interneuron types in our data: overall (left) and per cortical layer (right). This figure shows the 217 cells used for supervised
classification, with the SBC, NBC, and LBC types also shown in the bar corresponding to BA (i.e., the BA bar does not contribute to total cell count)

thicknesses were random variables rather than precise
values. We distinguished between bipolar/bitufted and
multipolar dendrites by determining whether dendrite
roots were located along a single axis (for an alterna-
tive metric see [33]). Finally, we quantified a number of
complex, type-specific patterns with simple, ad-hoc mor-
phometrics. For the MC type, we quantified the ‘axonal
collaterals that reach layer L1 and then ramify to form a
fan-like spread of axonal collaterals’ [9] pattern by con-
sidering the estimated probability of the axon reaching
L1, together with properties, such as width, of the upper
part of the arbor. For ChC, we counted the number of
‘short vertical terminal branches’. We did not estimate
translaminar extent as, without knowing the soma’s loca-
tion within the column, it is poorly correlated to tangential
arborization span [34]. Figure 3 illustrates some of these
morphometrics.
The remaining 55 morphometrics were standard met-

ric and topological [30] ones, such as bifurcation angles
and partition asymmetry [54], including features of axon
terminal branches such as length and curvature. We
avoided morphometrics that are possibly sensitive to
reconstruction granularity, such as those derived from
axonal and dendritic diameter, local bifurcation angles, or
segment length (e.g., the Fragmentation and Length
analyses in L-Measure), as we had two groups of cells
that differed sharply in terms of mean diameter and
segment length.
We computed the morphometrics with the open-source

NeuroSTR library and custom R [38] code. NeuroSTR
allowed us to handle multifurcations (e.g., we ignored
angle measurements on multifurcating nodes) and com-
pute arbitrary statistics, so that, for example, we were able
to compute the median branch length. Still, a number of
potentially useful morphometrics available in Neurolu-
cida Explorer, such as box counting fractal dimension [59],
were not available in NeuroSTR and thus were not consid-
ered in this study. Additional file 1 (Section 1) lists all the

morphometrics used, with definitions and computation
details.

Supervised classification
Rather than training models to distinguish among all
interneuron classes at once, we considered eight settings
where we discerned one class from all the others merged
together (e.g., whether a cell is a ChC or a non-ChC cell).
One benefit of this is that we can interpret such mod-
els, and look for relevant morphometrics, in terms of that
particular type. On the other hand, training these models
suffers from class imbalance ( [43],); this was most pro-
nounced for the ChC type (there were seven ChC cells and
210 non ChC cells), and least pronounced for BA (123 BA
and 94 non-BA cells), which was the only setting in which
the class of interest was the majority one (i.e., there were
more BA than non-BA cells).
To each classification setting we applied nine supervised

classification algorithms (see Table 1 for a list with abbre-
viations), such as random forest (RF), single-layer neural
networks (NNET), and support vector machines (SVM),
covering all main ‘families’ of classifiers. RF and SVM
are among the most accurate classifiers available [60],
while lasso regularized logistic regression (RMLR) and
classification and regression trees (CART) can provide
parsimonious and interpretable models.
Briefly, NB approximates the joint probability distribu-

tion over the class and the features P(c, x) by assuming
the features x are independent given the class c, while
LDA assumes that each class-conditional density p(x | c)
is a multivariate Gaussian with a mean μc and a covari-
ancematrix� common to all classes. RMLR approximates
P(c | x) with a linear function of x, fitting its coeffi-
cients β by regularized maximum likelihood estimation.
The β are interpretable: keeping all other features fixed,
a unit increase in a standardized feature Xj increases
the log-odds of the positive class by βj. NNET mod-
els P(c | x) as a linear combination of derived features,
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Fig. 3 Custom-implemented morphometrics for an L4 MC (top panel: left; bottom panel: red), an L2/3 NBC (top: middle; bottom: green), and an
L2/3 SBC (top: right; bottom: blue) interneuron. The bottom panel shows standardized values, with black dots indicating minima and maxima
(extrema outside (−2.5, 2.5) not shown). The axon of the MC cell originates from the upper part of the soma (axon_origin), grows along a radial
axis (eccentricity, radial; axis drawn with the orange line), radially far from the soma (y_mean, center of mass shown with orange dot) and
above it (y_std_mean), covers a small surface (grid_area), and its branches are not clustered together (grid_mean). It is translaminar
(translaminar) and there is just a moderate (around 30%) probability of it reaching L1 (l1_prob) because, even with its soma vertically in the
middle of L4, it only touches the bottom of L1. Low l1_prob and arbor width produce a low estimate of width (l1_width), bifurcations count
(l1_bifs), and horizontal fanning out (l1_gxa) in L1. The dendritic arbor of the MC cell is displaced (d.displaced) from the axon and the
dendrites stem from opposite ends of the soma (d.insert.eccentricity), located along a radial axis (d.insert.radial). The NBC cell’s
axonal arbor is circular (radial), with closely grouped branches (grid_mean)) and a number of short vertical terminals
(short_vertical_terminals). The axon of the SBC cell is intralaminar, tangentially oriented, with closely grouped branches, while both cells’
dendrites are spread out (multipolar) and colocalized with the axons. Dashed green lines indicate layer boundaries from the rat hind-limb
somatosensory cortex, assuming that the somas are located in the middle of their layer. Axon is shown in blue with dendrites and somata in red. The
grid lines are at 100 μm from each other. Dendritic morphometrics are prefixed with d.. Axon terminal branch morphometrics, not shown here, are
prefixed in the remainder of the text with t

each of which is in turn a linear combination of x. The
SVM finds the maximal margin hyperplane that sepa-
rates two classes while projecting the data onto a higher
dimensional space. CART recursively partitions the train-
ing samples by considering a single feature at a time.
RF and ADA are ensembles of T classification trees. RF

learns T trees from T bootstrap samples of the train-
ing data, while ADA learns each tree in the sequence by
giving more weight to instances misclassified by the pre-
vious tree. kNN classifies an instance x by choosing the
most common class label among its k nearest neighbors in
feature space.
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Table 1 Classification algorithms and their parameterization

Classifier Abbreviation R Package Prespecified
Parameters

Classification and
regression trees

CART rpart [71] |Da| = 10,
|Dl| = 5

k nearest neighbors kNN kknn [72] k = 5, p = 2
unweighted

Linear discriminant
analysis

LDA MASS [73]

Gaussian naive
Bayes

NB e1071 [74]

Random forest RF randomForest
[75]

T = 2000,m = √
n

Lasso regularized
logistic regression

RMLR glmnet [76] λ = 0.01

Support vector
machine

SVM e1071 [74, 77] RBF: γ = 1
n , C = 1

Single-layer neural
network

NNET neuralnet [78] h = 5

AdaBoost ADA gbm [79] T = 3000 d = 1
s = 0.001

For kNN, p = 2 stands for Euclidean distance. RBF: radial basis function. Remaining
parameters are defined in the Additional file 1/. R package is the library
implementing the method

We handled class imbalance with a hybrid of random
undersampling and SMOTE oversampling (e.g., [61],),
meaning that we removed (added) some majority (minor-
ity) class instances from (to) the training data. We also
pruned the set of morphometrics [41] by keeping only
those that were relevant according to the Kruskal-Wallis12
(KW) statistical test [62] and our adaptation of the RF
variable importance (RF VI) ranking [39] for imbalanced
settings, termed balanced variable importance (RF BVI),
seeking to simplify the learnedmodels. The RF VI of a fea-
ture can be loosely interpreted as its effect on the accuracy
of a random forest; to account for imbalance, we defined
RF BVI as the arithmetic mean of the per-class VI values
(see Section 2.5.2 in Additional file 1 for details). Both KW
and RF BVI are non-parametric and stable feature selec-
tion methods, that is, robust to minor perturbations in the
data. Furthermore, in small-sample class-imbalance set-
tings, univariate feature selection, such as with the KW
test, can improve predictive performance more than over-
and under-sampling [63].
Most of the classifiers used, as well as the sampling and

feature selection methods, require us to specify param-
eters, such as the number of neighbors for the kNN
classifier or the number of majority class instances to
remove in undersampling. While learning these from
data may improve performance, we opted to avoid addi-
tional learning complexity (i.e., increasing the probability
of over-fitting) and instead pre-specified all parameters,
using mostly the default values from the implementations

of the corresponding methods (see Tables 1 and 2) rather
than fine-tuning them. For kNN and CART we chose five
neighbors (k = 5) and five instances (|Dl| = 5) at leaf
nodes, respectively, as we expected lower values to yield
overly complex models. For RF BVI we used 20000 trees
(T = 20000) to get stable rankings, while the ranking cut-
point value of 0.01 (bvi > 0.01) for was arbitrary. For over-
and under-sampling we devised a heuristic (see Additional
file 1: Section 2) to determine the sampling ratios; Fig. 4
illustrates its effects on the class distributions in the dif-
ferent settings. Note that we used the same parameters in
all eight classification settings.
The full learning sequence was therefore: 1) feature

selection; followed by 2) data sampling; and finally 3) clas-
sifier induction, with steps 1 and 2 being optional (i.e., we
also considered not selecting features and not sampling
the training data). We evaluated the classification perfor-
mance with F-measure13 [64], a metric useful for assessing
the prediction of the class of interest in imbalanced set-
tings, and estimated it with k-fold cross-validation. We
ran all three steps of the learning sequence on the k
training data sets alone, i.e., without using the test fold
(that is, we selected features and sampled data within the
cross-validation loop, not outside of it). Since data sam-
pling is stochastic, and a large sampling ratio can change
the training set class distribution, we repeated cross-
validation ten times when including sampling within the
learning sequence. Finally, we identified potentially atypi-
cal MCmorphologies as those commonly misclassified by
different models [45].
In order to classify an interneuron into any of the

seven ‘base’ types (i.e, other than the compound BA
type), we combined one-versus-all models by assigning
the neuron to the type with the most confident model,
that is, the one giving the highest probability to its
positive class.
Additional file 1 (Section 2) provides relevant details

about the methods used, including literature references,
precise definitions, the underlying rationale, descriptions
of the sampling procedure and F-measure computation, as
well as implementation details.

Table 2 Parameters for feature selection (KW and RF BVI),
sampling (SMOTE) and cross-validation (CV)

Method R Package Parameters Learner parameters

KW stats [38] α = 0.05
adjust = FDR

RF BVI randomForest [75] bvi > 0.01 T = 20000,m = √
n

SMOTE mlr [80] k = 5

CV mlr [80] r = 10 k = 10, for ChC k=7

FDR stands for false discovery rate; r is the number of CV repetitions; k the number
of folds. Learner parameters are the RF parameters used internally for RF BVI
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Fig. 4 Effects of under- and over-sampling the full dataset with the chosen rates. Each bar represents a one-versus-all classification task (e.g., the
leftmost bar is for ChC versus rest). ‘Positive‘ denotes the examples of the class of interest (e.g., ChC in the leftmost bar), ‘Synthetic‘ are the artificial
SMOTE examples of the positive class (i.e., the class of interest), while ‘Negative‘ are the kept examples of all remaining classes. The horizontal line
shows the size of the original data set (217 examples). For ChC (leftmost bar), for example, applying our sampling method to the full data set
containing seven ChC cells (red segment of the bar), would retain 105 (blue segment) out of 210 non-ChC cells and add 14 synthetic ChC cells
(green segment), yielding a data set of size 126 (hence the bar is lower than the horizontal line at 217). Except for BA, in all cases the class of interest
was the minority class. For BA we performed no undersampling

Results
We first show that some class labels differed from those
provided by the neuroscientists in [14] and illustrate
reconstruction issues that require care when choosing and
computing morphometrics. We then present the classi-
fication results and show that accurate models classified
MC cells in accordance with the independent classifica-
tion by the neuroscientists from [14]. Finally, we provide
quantitative descriptions of the types, in terms of only a
few morphometrics or parsimonious CART and logistic
regression models.

Validating class labels andmorphology reconstructions
For eight out of 20 cells which were also classified by 42
neuroscientists in [14] our class label differed from that

given by the majority of the neuroscientists (see Table 3
and Fig. 5, left). There was no strong consensus on the
actual type for these cells among the neuroscientists,
although cells C050600B2, C091000D-I3, and C170998D-
I3 were LBC, CB, and CB, respectively, according to at
least 19 of them. For 5

19 = 26% of the considered cells
no more than five neuroscientists agreed with our class
label14, suggesting that there might have been many such
differing class labels had we been able to compare them
for the entire data set.
Interestingly, the interneurons could be separated into

two groups, one containing cells with their arbors recon-
structed at a finer level —with shorter and thinner
segments— than those of the other (see Fig. 5, right).
We thus avoided using morphometrics sensitive to such

Table 3 Disagreement with our class labels by 42 neuroscientists who participated in [14]

ID Layer Cell type DF Agree AR CB ChC CR CT HT LBC MC NGC OT UN

1 C040600B2 2/3 MC CT 0 3 9 0 0 15 2 5 0 0 5 3

2 C050600B2 2/3 MC LBC 1 0 5 0 0 10 1 20 1 0 2 3

3 C150600B-I1 2/3 MC CT 1 1 11 0 0 16 0 9 1 0 3 1

4 C091000D-I3 5 ChC CB 3 3 19 3 0 6 0 6 0 2 2 1

5 C260199A-I3 4 MC CT 3 0 5 0 0 17 0 6 3 0 4 7

6 C170998D-I3 2/3 NGC CB 5 1 19 0 0 11 0 0 0 5 4 2

7 C070600B2 4 MC LBC 11 2 1 0 0 8 0 15 11 0 2 3

8 C090997A-I2 4 MC CT 12 1 6 0 0 14 0 4 12 0 1 4

Cell type is the label in our data, given according to the classification scheme from [6] while DF (standing for DeFelipe) is the majority label chosen by the neuroscientists,
according to the scheme from [14]. Agree is the number of neuroscientists that coincided with our label, while columns to the right show the number of neuroscientists who
selected the corresponding DF label (all shown in boldface): AR - arcade; CB - common basket; CR - Cajal-Retzius; CT - common type; HT - horse-tail; OT - other; UN -
uncharacterized, meaning that the axonal morphology reconstruction was not sufficient to distinguish the type. The table shows eight out of the 20 interneurons which were
classified as ChC, MC, or NGC—the three types common to both classification schemes— in our data yet differently by the majority of neuroscientists (column DF); for the
remaining twelve interneurons, the neuroscientists’ majority label matched ours. Cell C040600B2, which was presented to the neuroscientists rotated upside-down, is
marked in blue. ID can be used to look the neuron up at Neuromorpho.org
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Fig. 5 Possible class label and reconstruction issues. Left panel: cells C050600B2 (left), C091000D-I3 (middle), and C150600B-I1 (right) from Table 3,
labelled as MC and ChC, respectively, yet only one, three, and one (out of 42) neuroscientists in [14], respectively, coincided with those labels,
assigning them instead to the LBC, CB, and CT types. Note that we did not know the location of soma inside their layers; for the MC cells, a soma
closer to L1 would mean more extensive axonal arborization in that layer. Axons are drawn in blue with dendrites and somata in red. Dashed green
lines indicate layer boundaries from the rat hind-limb somatosensory cortex; L6 is only partially shown. There are 100 μm between consecutive grid
lines. Right panel: newer reconstructions, whose IDs do not begin with a C, had thinner and shorter segments

fine-grained properties (e.g., the number of segments per
branch). However, this difference may have distorted met-
rics such as tortuosity, since finer reconstructed branches
were more tortuous; see Section 3.1 in Additional file 1.
84 cells had at least one multifurcation (a branching point
splitting into three or more child branches; at most ten in
a single neuron) yet their effect wasminimal as we ignored
these branching points when computing bifurcation mor-
phometrics, such as mean partition asymmetry or mean
bifurcation angle. Two cells seemed to be modified clones
of other cells; see Section 3.2 in Additional file 1 for
details. We only found two reconstruction anomalies: a
285 μm long segment (whereas median length was 2 μm),
and two axonal arbors that were extremely flat in the Z
dimension (less than 80 μm deep while median depth
was 215 μm; ratio of depth to axonal length was below
1

100 while median ratio was 1
62 ). We did not correct these

issues nor remove the corresponding neurons.

Classification
Table 4 shows the best F-measure results for the eight clas-
sification settings. The most accurately classified classes
were BA, MC, and NBC (shown in green), each with

an F-measure ≥0.80, while classifying ChC and BTC
cells was difficult (best F-measure 0.50 and 0.44, respec-
tively). The best model for MC performed better than
the average neuroscientist in [14] when identifying MC
cells, as their average F-measure was 0.7215. Accuracy
tended to increase with type frequency (F-measure gener-
ally increases towards the bottom rows of Table 4), with
the exceptions of LBC, which was the third hardest to clas-
sify despite being the second most numerous, and BTC,
which was the hardest type to classify yet only second least
numerous.
Sampling improved the performance of most classifiers,

although the largest increase in best F-measure was only
0.03, for the NBC type (see Table 4, row 18). Feature selec-
tion increased the best F-measure for BA, DBC, MC, and
especially for BTC and SBC (Table 4, rows 7 and 15).
RW BVI selected much smaller sets of morphometrics
(e.g., 7 for SBC; Table 4, row 15) than KW (up to 68,
for BA; Table 4, rows 31-32), allowing, for example, to
accurately classify NBC cells using just 9 morphometrics
(Table 4, row 19). Further feature pruning by the CART
and RMLR models after KW produced parsimonious and
accurate models, such as the RMLR model for MC (with
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Table 4 F-measure one-versus-all classification

Cell Type Classifier FSS Sampling F-measure TPR TNR Morphom.

1 ChC RMLR 0.40 2 / 7 209 / 210 11

2 RF Yes 0.49 2.8 / 7 208.5 / 210 103

3 GBM KW 0.50 3 / 7 208 / 210 15

4 RF KW Yes 0.46 3.5 / 7 205.2 / 210 15

5 BTC NB 0.35 8 / 15 179 / 202 103

6 GBM Yes 0.36 5.8 / 15 191.2 / 202 23

7 LDA KW 0.44 6 / 15 196 / 202 7

8 LDA KW Yes 0.40 8.8 / 15 181.8 / 202 7

9 DBC RMLR 0.70 15 / 22 189 / 195 17

10 RF Yes 0.70 14.6 / 22 189.8 / 195 103

11 RF RF BVI 0.72 13 / 22 194 / 195 6

12 RF KW Yes 0.70 15.4 / 22 188.2 / 195 61

13 SBC CART 0.63 16 / 28 182 / 189 5

14 RF Yes 0.66 20.6 / 28 174.8 / 189 103

15 NNET RF BVI 0.74 21 / 28 181 / 189 7

16 RF RF BVI Yes 0.69 22.5 / 28 173.8 / 189 7

17 NBC CART 0.73 32 / 44 161 / 173 4

18 RF Yes 0.81 36.2 / 44 164 / 173 103

19 GBM RF BVI 0.78 34 / 44 164 / 173 9

20 GBM RF BVI Yes 0.77 37.4 / 44 157 / 173 9

21 MC SVM 0.77 37 / 50 158 / 167 103

22 RF Yes 0.81 40.2 / 50 158.4 / 167 103

23 RMLR KW 0.80 38 / 50 160 / 167 22

24 RF KW Yes 0.82 40.9 / 50 157.8 / 167 62

25 LBC GBM 0.61 26 / 51 158 / 166 103

26 RF Yes 0.67 29.8 / 51 157.4 / 166 103

27 GBM RF BVI 0.66 31 / 51 154 / 166 4

28 GBM RF BVI Yes 0.67 37.4 / 51 142.2 / 166 4

29 BA RF 0.86 106 / 123 76 / 94 103

30 SVM Yes 0.86 101.9 / 123 80.8 / 94 103

31 SVM KW 0.88 105 / 123 84 / 94 68

32 SVM KW Yes 0.88 104.2 / 123 84.2 / 94 68

The table shows, for each type, the best F-measure in all four learning settings: with and without sampling, and with and without feature selection. TPR: true positive rate;
TNR: true negative rate; the minority class is always the positive one, except for BA; Morphom.: the number of morphometrics in the model. Types are sorted from least to
most frequent (e.g., ChC, with only seven examples, is shown uppermost). The best F-measure for each type is typeset in bold. Types with their best F-measure ≥0.75 are
shown in green; those with an F-measure ≥0.60 in orange; and the rest in red

an F-measure of 0.80 and 22 morphometrics; Table 4,
row 23). See Additional file 1 (Figure S3 to Figure S10)
for detailed per-type graphs of classification performance,
broken down by classification, feature selection and sam-
pling method.
We achieved best multi-class classification when com-

bining one-versus-all RF models learned after KW feature
selection and sampling, with an accuracy of 0.74 (see
Figure S11 in Additional file 1 for all accuracies). This pro-
duced a notably higher per-class F-measure for LBC (0.75

versus 0.67 in Table 4), lower per-class F-measure for ChC
and SBC (0.22 and 0.67 versus 0.50 and 0.74 in Table 4,
respectively), and similar values for the remaining types
(see Table S9 in the Additional file 1 for the multi-class
confusion matrix).

Validating the MCmodels
We validated the two most accurate models for MC —RF
with sampling and RMLR, both preceded by KW feature
selection (see Table 4, rows 22–24)—, by comparing their
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output to the classification by the neuroscientists from
[14], which was not used to train the models.
As Table 5 shows, the models largely agreed with the

neuroscientists in [14]. Cells that were considered MC
by 13 or less neuroscientists (upper part of Table 5)
were also rarely classified as MC by our models, with
cells C050600B2, C260199A-I3, and C230998C-I4 never
labelled as MC by either model. Both models dis-
agreed with the neuroscientists on cells C040600B2 and
C090997A-I2 —the former was, however, shown to the
neuroscientists rotated upside-down, which may account
for so few votes for MC— and RF disagreed on cell
C150600B-I1, considering it MC 22 out of 30 times. On
the other hand, cells that were MC according to 14 or
more neuroscientists (lower part of Table 5) were always
classified as MC by the models, except for C061000A3,
which RMLR never classified as MC.
Figure 6 shows the four cells that were considered MC

at most six (out of 30) times by both RF and RMLR. These
include the cells C050600B2, C260199A-I3, C230998C-I4
(shown in red in Table 5), classified as MC by only one,
three, and 13 neuroscientists, respectively. These cells
may correspond to atypical MC morphologies.

Table 5 Classification of MC cells by the neuroscientists in [14]
and our two most accurate models, RF and RMLR

ID Layer RF RMLR MC Non-MC UN

1 C040600B2 L2/3 29 23 0 39 3

2 C050600B2 L2/3 0 0 1 38 3

3 C150600B-I1 L2/3 22 1 1 40 1

4 C260199A-I3 L4 0 0 3 32 7

5 C070600B2 L4 12 0 11 28 3

6 C090997A-I2 L4 30 19 12 26 4

7 C230998C-I4 L4 0 0 13 25 4

8 C190997A-I1 L4 30 30 14 26 2

9 C290500B-I3 L2/3 30 30 18 20 4

10 C150501A-I3 L5 30 30 22 6 14

11 C060400C1 L2/3 30 30 24 18 0

12 C290500C-I4 L5 30 30 26 15 1

13 C061000A3 L4 30 0 34 6 2

14 C100501A3 L2/3 30 30 36 3 3

15 C050896A-I L5 30 30 37 4 1

16 C070301B2 L6 30 30 37 4 1

17 C180298B-I3 L5 30 30 38 3 1

MC is the number of neuroscientists who classified the cell as MC, Non-MC the
number of those who assigned it to another type, and UN the number of those who
considered that the axonal morphology reconstruction was not sufficient to
distinguish the type. RF and RMLR show the number of times (out of 30) that RF and
RMLR classified the cell as MC. Cells that were never classified as MC by both models
are marked in red. Cell C040600B2, which was presented to the neuroscientists
rotated upside-down, is marked in blue. ID can be used to look the neuron up at
Neuromorpho.org

Feature selection
For all types except for ChC and BTC, we achieved at least
moderately accurate (F-measure ≥0.65) models using few
morphometrics (see Table S5 in the Additional file 1).
Below we describe the BA, NBC, DBC, SBC, and SBC
types in terms of the morphometrics selected with RF
BVI, and the MC type in terms of those selected with KW
followed by CART and RMLR embedded feature selec-
tion (this yielded more accurate models for MC than RF
BVI). We also describe the BA and MC types in terms
of accurate (F-measure ≥0.75) and parsimonious CART
and logistic regression (RMLR) models. Finally, we com-
plement each type description with some of the best-
ranked morphometrics according to the KW test, and
conclude with a summary of feature selection. We begin
with the most accurately classified type, BA, and proceed
towards the least well discerned ones, ChC and BTC. See
Additional file 1 for the full list of KW- and RF BVI-
selected morphometrics (Tables S7 and S8, respectively),
along with the corresponding p-values and RF BVI values.

BA characteristics
Six axonal morphometrics selected by RF BVI (Fig. 7) suf-
ficed to accurately (with an F-measure of 0.86) distinguish
BA cells. These morphometrics captured two properties
only: remote branching angle and arborization distance
from soma. Indeed, BA cells had sharper remote bifurca-
tion angles and arborized closer to the soma, especially
in terms of vertical distance (Fig. 7). While LBC cells
can extend vertically far from the soma ([6, 16]; their
average height in our sample was 1020μm ± 327μm, ver-
sus 603 μm ± 190 μm for the NBC and SBC together),
it seems that most of their arbor is nonetheless located
near the soma, with radially distant ramifications being
rather sparse. The CART and RMLRmodels derived from
the six RF BVI-selected morphometrics were accurate (F-
measure of 0.85 and 0.83, respectively) and interpretable
(e.g., [19] used CART to relate mRNA expression to
neuro-anatomical type). The CART model, for example,
is a set of rules such as “all cells with path_dist.avg <
414 and y_mean_abs < 133 are BA cells”. The models are
presented in Fig. 8 and Table 6.
The KW test identified a further 63 morphometrics,

including 26 dendritic ones, that differed between the BA
and non-BA cells, yet using them barely improved the
F-measure achieved with the six RF BVI-selected mor-
phometrics alone (from 0.86 to 0.88). Interestingly, the
number of dendritic trees was among the most relevant
morphometrics, with BA cells having more dendritic trees
than non-BA ones (Fig. 7). Although some basket cells
have curved axon terminals [9], t.tortuosity.avg
was only 47-th most relevant morphometric according
to KW, suggesting that we may need a more appropriate
morphometric to capture the curved property of basket
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C050600B2
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C260199A−I3

RP110114_L5−1_IDH
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Fig. 6MC cells that were classified as non-MC by the two most accurate models. Cells C050600B2, C260199A-I3, and C230998C-I4 were classified as
MC by only one, three, and 13 neuroscientists in [14], respectively. Cells C260199A-I3 and C230998C-I4 do not reach L1 unless their actual soma was
located near the top of L4, although tissue shrinkage may have reduced their height by around 10%. Axons are drawn in blue with dendrites and
somata in red. Dashed green lines indicate layer boundaries from the rat hind-limb somatosensory cortex. There are 100 μm between consecutive
grid lines

terminal branches. Axonal properties that did not differ
for BA cells included average branch length, arbor length
and initial direction (whether towards pia or the white
matter).

MC characteristics
The six morphometrics selected by CART (following KW
selection) allowed for classifying MC cells with an F-
measure of 0.75. According to this model, a typical MC
cell’s axon arborized far above the soma (y_mean), widely
in layer L1, and bifurcated in wide angles. The model is
described in Fig. 9. Using 22 morphometrics, including
seven dendritic ones, KW + RMLR was more accurate
(F-measure of 0.80) and uncovered additional MC proper-
ties, such as longer dendritic trees, displaced from axonal
arbors, which in turn were moderately radial (see Fig. 10).
This agrees with [6] and [57], who reported elaborate den-
drites, 1013 ±503 μm axonal width in L1, and average
tilt angles of 80 degrees. It also contrasts with the above
description of BA cells, which arborized vertically close
to the soma, had shorter bifurcation angles, and many
dendritic trees. This is illustrated in Fig. 10, which plots
MA, BA and all other types using the two most useful
morphometrics for BA.

KW selected 40 additional morphometrics, including
17 dendritic ones, with the strongest difference for
path_dist.avg and y_mean (see Table S7 in
Additional file 1). MC cells often had bitufted dendrites
(also reported by [6]) and axons originating above
the soma.

NBC characteristics
Nine axonal morphometrics selected by RF BVI allowed
an accurate (F-measure 0.78) classification of NBC cells
(see Fig. 11). Six of these morphometrics were related to
arborization distance from soma; the rest to translaminar
reach, branch length, and arbor density.
KW identified a larger and more diverse set of 48 mor-

phometrics, including 21 dendritic ones, that differed
for NBC cells (see Table S6 in Additional file 1), yet
using all of them slightly decreased performance with
respect to using only the nine RF BVI-selected morpho-
metrics (F-Measure from 0.78 down to 0.75). In addi-
tion to arborization distance from soma and translami-
nar reach, relevant morphometrics included axonal ter-
minal degree, arbor eccentricity, partition asymmetry,
terminal branch length, and whether the dendrites
were bitufted.
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Fig. 7 Relevant morphometrics for the BA type. Top left: per-type boxplots for the six morphometrics selected with RF BVI (RF BVI values shown, in
blue, to the right). The most relevant morphometrics, mean arborization distance to soma (path_dist.avg), and mean remote bifurcation angle
(remote_bifurcation_angle.avg), are shown in the upper part of the panel. Top right: a biplot of these six morphometrics, with the data
projected onto the two principal components, found with principal component analysis (vectors represent morphometrics and the angles between
them are indicative of their pairwise correlation). All morphometrics were correlated with either path_dist.avg or
remote_bifurcation_angle.avg. Bottom left: the ten most relevant morphometrics according to KW, after removing those with absolute
correlation >0.90 with a better ranked morphometric, with the KW p-values shown, in blue, to the right of the boxplot. These morphometrics
included those relative to arborization distance from soma (e.g., euclidean_dist.avg, path_dist.avg), remote bifurcation angles
(t.remote_bifurcation_angle.avg), the number of dendritic trees (d.N_stems), and axonal arborization along the radial direction
(ratio_y). In addition to having sharper bifurcation angles and arborizing closer to the soma, especially in the radial direction, BA cells had more
dendritic trees than non-BA cells

DBC, SBC and LBC characteristics
DBC cells were classified with moderate accuracy (F-
measure 0.72) with the five morphometrics selected by RF

BVI, all related to axonal arbor eccentricity, distribution
along the Y axis, and width (see Fig. 12). While KW
identified 61 significantly different morphometrics for
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Fig. 8 CART model (F-measure value of 0.85) for BA derived from the six morphometrics selected with RF BVI. Most of the BA cells (i.e., those
contained in the two rightmost tree leaves) have a path_dist.avg < 414 and either y_mean_abs < 133 or
remote_bifurcation_angle.avg < 75°, meaning that they arborize close to the soma, especially vertically, whereas if they do arborize
further vertically (as some LBC cells do), they have sharper bifurcation angles. Each box represents a split in the data set, indicating: (a) its majority
type (BA is the majority type overall and hence it is shown in the root node of the tree (i.e., the initial split)); (b) proportion of positive examples (BA
cells represent 57% of the data set and hence 0.57 in the root node; they present 95% of the samples in the rightmost node); and (c) the percentage
of the data set reaching the split (100% of the data passes through the root split; 44% of the data set reaches the rightmost node)

DBC —more than for SBC, NBC, and LBC, even though
these were more numerous than DBC— using all of those
morphometrics did not improve DBC classification (F-
measure dropped to 0.70). The most relevant ones were
related to the radial arborization of both the axon and the

Table 6 Logistic regression (F-measure of 0.83) model for BA
derived from the six morphometrics selected with RF BVI, with
the β estimated from the standardized data set, and BA being
the positive class

Morphometric β

remote_bifurcation_angle.avg −2.1 × 10−1

euclidean_dist.avg −1.2 × 10−2

y_mean_abs −3.3 × 10−3

path_dist.sd −1.5 × 10−3

path_dist.avg −2.0 × 10−4

Interpretation is straightforward; for example, according to the model, a
7.33°increase in the average bifurcation angle of a cell reduce the log-odds of
BA by 0.21

dendrites (Fig. 12). Interestingly, KW selected more (26)
dendritic morphometrics for DBC than for any other type.
For SBC we achieved an 0.73 F-measure with the

seven RF BVI-selected morphometrics, related to mean
branch length, arbor density, and arborization distance
from soma (see Fig. 12). KW selected 39 morphometrics,
although using them did not improve with respect to using
RF BVI-selected ones alone (F-measure from 0.73 down to
0.67). Relevant morphometrics included y_sd, related to
radial arborization extent, and the maximal arborization
distance from the soma (euclidean_dist.max).
LBC cells were classified with an F-measure of 0.66 with

the fourmorphometrics selected with RF BVI, related only
to remote bifurcation angles and arborization distance
from soma (see Fig. 12). According to KW, the remote
bifurcation angle was the most significant morphomet-
ric, with a p-value of 3.7 × 10−8, followed by remote tilt
angle, median terminal branch length, grid_area and
the number of dendrites (see Table S7 in Additional file 1).
KW identified only 32 relevant morphometrics for LBC,
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Fig. 9 CART model for MC, with an F-measure value of 0.75. Most MC cells (rightmost leaf) have a y_mean ≥132 (their axons mainly arborize above
the soma), remote_bifurcation_angle.avg ≥ 74°, l1_width ≥0.27 and dendritic terminal degree < 2.1. Each box represents a split in
the data set, indicating: (a) its majority type (Non-MC is the majority type overall and hence it is shown in the root node of the tree (i.e., the initial
split), whereas MC is the majority type in the rightmost split); (b) the proportion of positive examples (MC cells represent 23% of the whole data set
and hence 0.23 in the root node; they present 95% of the samples in the rightmost node); and (c) the percentage of the data set reaching the split
(100% of the data passes through the root split; 18% of the data set reaches the rightmost node)

much less that for other numerous types; using all these
morphometrics reduced the best F-measure to 0.62.

BTC and ChC characteristics
For BTC, only seven morphometrics were relevant
according to KW, with dendritic polarity and the
standard deviation of branch length (length.sd),
among the most significant ones. For ChC, the rele-
vant properties according to KW included arbor density
(density_bifs, grid_mean), mean branch length,
the number of short vertical branches, and terminal
degree.

Summary
KW identified more relevant morphometrics for the more
numerous types, with the exceptions of LBC (second
most numerous, yet only sixth most features) and DBC
(sixth most numerous, yet third most features). Den-
dritic morphometrics represented 30–40% of the relevant
ones, except for ChC (a single dendritic morphometric
out of seven relevant ones; see Table S7 in Additional
file 1). 11 dendritic and four axonal morphometrics were

not relevant for any type, and are possibly useless for
interneuron classification: dendritic bifurcation angles,
tortuosity, and radial and tangential arbor distribution,
and axonal torque angle and tangential arbor distribution.
Dendritic tree length and d.displaced, however, were
relevant for six out of eight types. Custom-implemented
morphometrics represented between 47% and 72% of the
selected morphometrics. Only two custom-implemented
morphometrics (ratio_x and x_mean_abs) were not
useful for any type, while translaminar and y_sd
were relevant for six types.

Discussion
We obtained accurate models for the NBC, MC, and BA
types and moderately accurate ones for DBC, SBC, and
LBC. The bestMCmodel was better than the average neu-
roscientist in [14] and was outperformed by only three
out of 42 of them (see Section 6 in Additional file 1). The
best BA model was even more accurate, correctly identi-
fying 105 out of 123 BA cells (see Table 4). These models,
along with the model for NBC, would probably be useful
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Fig. 10 Relevant morphometrics for the MC type. Left: ten morphometrics with strongest β in the KW + RMLR model (β shown, in blue, to the right
of the boxplot; full model in Additional file 1, Table 6). Largely positive y_std_mean (top of the boxplot) indicates that MC cells preferentially
arborized above the soma. Having longer dendritic arbors (d.total_length) but less dendrites (d.N_stems) means that MC cells had longer
individual dendritic trees; these arbors were displaced from the axonal ones (d.displaced), which were often radially oriented (radial). Right:
MC cells mainly arborize above the soma (y_std_mean) and have wide bifurcation angles (remote_bifurcation_angle.avg)

for the definitive automatic classifier envisioned by [14] to
replace neuroscientists in this task. The remaining models
were probably not good enough: the next best model cor-
rectly identified only 20 out of 28 SBC cells (see Table 4).
The main limiting factor seems to have been sample size:
with the exception of LBC, more numerous types were
classified more accurately; indeed, we only had 28 SBC, 22
DBC, 15 BTC and seven ChC cells. Taking sample sizes
into account, moderate F-measure values suggest that the
DBC and SBC types are morphologically distinct and we
expect that around 50 cells (a count close to that of NBC
and MC cells) would suffice to accurately classify them.
The LBC type was relatively hard to classify. Either we
have missed to quantify its distinctive morphometrics —
there were less relevant morphometrics for LBC than for
other numerous types— or its morphology is not suffi-
ciently distinct when contrasted to the other types merged
together. Distinguishing across layers (e.g., L2/3 LBC, L4
LBC, etc.) might decompose it into morphologically dis-
tinct subtypes.
One explanation for the differences between our class

labels and the classification from [14] shown in Table 3 is
that ours were ultimately determined by the presence of
spiny boutons and dendritic spines (MC), short vertical
rows of boutons (ChC), or a high density of small boutons
(NGC). Indeed, for [57] spiny boutons, along with axonal
spread in L1, are an essential (mandatory) characteristic of

MC cells. Yet, ChC,MC and, to a lesser degree, NGCmor-
phologies are often identifiable by axonal and dendritic
geometry alone [14] suggesting that their arborization
patterns are distinct. Thus, while cells in Table 3 might
be meeting fine-grained criteria for MC, ChC, and NGC
membership, their high-level morphologies are atypical,
as most of the 42 neuroscientists considered that they
did not belong to those types. It is hard for a model to
correctly classify such cells, unless some morphometrics
are correlated with the fine-grained features. Thus, there
might be a limit to how well the classification by [6] could
be replicated by a model trained on morphological recon-
structions. However, even when the MC models failed to
recover the class label, their output may have been sensi-
ble, as it was often consistent with the classification by the
42 neuroscientists (see Table 3). MC cells classified as not
MC by accurate models might thus correspond to atypical
MC morphologies.
An alternative, but less likely, explanation for the differ-

ence is that some class labels had been wrongly assigned,
without following the pre-specified criteria. In that case,
wrong labels would have biased the models as well as their
performance estimates [65]. Instead of assuming that all
class labels are correct, as we did, they can be estimated
together with classifier learning (Frénay and Verleysen,
2014), although this makes the learning problem more
difficult.
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Fig. 11 Relevant morphometrics for the NBC type. Left: per-type boxplots for the nine morphometrics selected with RF BVI (RF BVI values shown, in
blue, to the right). For most NBC cells, the axon never arborized far from the soma (low euclidean_dist.max; top part of the panel) nor
outside of its cortical layer (low translaminar). Although selected by RF BVI, length.avg and density_bifs, the box-plots (bottom part)
show that these morphometrics were not univariately useful. Right: the nine selected morphometrics separate the NBC cells from non-NBC ones.
The biplot shows the data projected onto the two principal components, found with principal component analysis, with the vectors representing
the morphometrics and the angles between them indicative of their pairwise correlation. Besides branch length (length.avg), translaminar
reach (translaminar), and arborization density (density_bifs), all selected morphometrics are related to arborization distance from soma.
They correspond to the vectors pointing towards the right; only euclidean_dist.avg is annotated to avoid overlapping

Additional morphometrics might further improve the
results. We consider that quantifying Petilla features
related to arborization patterns would be useful, espe-
cially for scarce types such as ChC. Some of our custom-
implemented morphometrics may have been too simple
(e.g., only branches extending no more than 50 μm ver-
tically were considered short and vertical) to adequately
capture the complexity of these features, and could be
elaborated. Type-specific morphometrics, such as the
extent of axonal arborization in layer L1 for MC cells,
incorporated prior knowledge about the types into the
models. Note that such underlying knowledge may be dis-
puted: e.g., [14] do not require an MC cell to reach layer
L1, while [57] consider it an essential, mandatory feature,
as do [13], except for L6 MC cells. It would be interest-
ing to study the robustness of standard morphometrics to
reconstruction issues such as inconsistent branch granu-
larity and then develop robust alternatives. For example,
t.tortuosity.avg might have better captured the
‘curved terminal branches’ feature of the BA type had
some cells’ branches not been reconstructed in finer detail
than those of others, thus increasing their tortuosity (see
Section 3.1 in Additional file 1). While at least 21 anal-
yses available in L-Measure would have not been robust

to reconstruction granularity inconsistency in this data
set, they are nonetheless used for neuron classification
(e.g., [66],). Thus, a software tool that implements robust
morphometrics could be useful for practitioners.
The small feature subsets and parsimonious models

that allowed (moderately) accurate classification serve
as summaries of the types’ morphological characteris-
tics. Most types can be summarized in terms of sim-
ple morphometrics, related to arborization distribution
with respect to the soma (e.g., path_dist.avg), its
vertical direction (e.g., y_std_mean), branching angles
(remote_bifurcation_angle.avg), or the number
of dendrites (d.N_stems), and a few elaborate ones, such
as the arborization extent in L1 (l1_width).
We have presented eight separate type-specific mod-

els and combined them to classify a given interneuron by
choosing the type with the most confident one-versus-all
model. An alternative is to learn a hierarchy of classi-
fiers by grouping types into ‘super types’ such as BA: one
would first classify a cell as BA or non-BA and then, if
classified as BA, distinguish among LBC, NBC, and SBC
types, and among the remaining types otherwise. Rather
than learning the hierarchy from data, one might prede-
fine it; useful ‘super-types’ could be formed, for example,
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Fig. 12 Relevant morphometrics for the DBC (above) and SBC and LBC (below) types. Top left: per-type boxplots for the morphometrics selected
with RF BVI (RF BVI values shown, in blue, to the right). The axonal arbor of a typical DBC cell was radially oriented (high radial and
eccentricity values), rather than circular, it did not spread far tangentially (low x_sd and width), and was mainly located below the soma
(low y_std_mean and y_mean). Top right: the ten most relevant morphometrics according to KW, after removing those already shown in the left
panel and those with an absolute correlation >0.90 with a better ranked morphometric (KW p-values shown, in blue, to the right). DBC cells’s
dendrites were bipolar/bitufted (d.insert.radial, not shown), arborized along the radial axis (d.radial) and reached far radially (d.y_sd),
while their axonal arbors were short (total_length), with wide terminal bifurcation angles (t.remote_bifurcation_angle.avg).
Bottom left: per-type boxplots for the morphometrics selected with RF BVI for SBC (RF BVI values shown, in blue, to the right). SBC cells had short
branches (low length.avg) and dense, local arbors (low density_bifs and euclidean_dist.avg). Bottom right: per-type boxplots for
the morphometrics selected with RF BVI for LBC (RF BVI values shown, in blue, to the right). LBC cells had sharp bifurcation angles

by grouping according to axonal target area — a dendrite-
targeting type would be composed of BP, BTC, DBC and
NGC cells [6].

Note that we have learned the models from juvenile
rat somatosensory cortex interneurons and these mod-
els might be less effective if applied to classify other
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species’ or brain area cells, especially because met-
ric variables, such as those related to distances from
the soma and arbor size, are affected by these fac-
tors. Doing so would also require appropriate lami-
nar thickness metadata in order to quantify laminar
extent. The presented supervised classification approach
could easily be extended to allow the discovery of new
types: since models such as logistic regression can quan-
tify the confidence in their prediction, one could con-
sider discovering types by clustering [67] cells that the
model cannot reliably assign to any of the a priori
known types.

Conclusion
We used 217 high-quality morphology reconstructions of
rat interneurons to learn models for eight interneuron
types. We have proposed and implemented morphomet-
rics that quantify relevant interneuron properties such
as laminar distribution and arbor extent in L1, dendritic
polarity, arbor orientation, and whether or not the den-
drites are displaced from the axon. We carefully selected
standardmetric and topological morphometrics, omitting
those that are not robust to reconstruction granularity.We
applied well-known classification algorithms and learned
accurate (F-measure values above 0.80), competitive with
neuroscientists, models for the BA, MC, and NBC types,
and moderately accurate (F-measure above 0.70) models
for the DBC and SBC types, although we had less than 30
cells of the latter two types. We characterized the types
in terms of parsimonious CART (for BA and MC) and
logistic regression (for BA) models that can be interpreted
by neuroscientists, and in terms of small sets of relevant
morphometrics: no more than nine morphometrics suf-
ficed for an at least moderately accurate classification of
the DBC, SBC, NBC, MC and BA types. The most rele-
vant morphometrics were related to axonal arborization
distance from the soma and bifurcation angles while most
dendritic morphometrics were not relevant. Differences
between our class labels and those by 42 leading neuro-
scientists from [14] suggest that it might be difficult to
perfectly replicate the classification by [6] without access
to fine-grained morphological features. However, even
when failing to recover the original label, the models’ out-
put seemed sensible as it often matched the classification
by 42 leading neuroscientists. We computed all the mor-
phometrics with open-source software and our code and
data are publicly available. This study showed that with
quality reconstructions, a careful selection ofmorphomet-
rics and an informedmachine learning approach, accurate
models can be learned from relatively few examples. We
speculate that 50 cells could suffice for learning accurate
models for the DBC and SBC types. This study also illus-
tratedminor reconstruction issues present in a curated set
of high-quality morphologies.

Achieving accurate automatic classification for all
established morphological types will require more
labeled interneurons to train the models with, espe-
cially for scarce types such as ChC. In the short term,
this may require leveraging the reconstructions from
Neuromorpho.org. Automated checks of morphology,
such as those performed by NeuroSTR (e.g., whether a
bifurcation angle is too wide to be plausible), could help
filter useful reconstructions, while developing morpho-
metrics robust to different types of variability (e.g., in
reconstruction granularity) might facilitate combining
diverse data. Aggregating cells labeled in different lab-
oratories could be problematic if these class labels have
been assigned following different criteria, and the labels
might need to be validated by multiple neuroscientists.
Classification criteria that give importance to fine-grained
morphological features, such as bouton distribution,
would imply a limit to attainable classification accuracy,
unless we can discover morphometric correlates of such
features. Finally, morphometrics that quantify complex
arborization patterns could be especially useful for the
less numerous types. In the long run, we expect efforts
by the Human Brain Project, the Allen Institute for
Brain Research, and NeuroMorpho.Org to provide many
high-quality morphologies. Given such data, we consider
that the methodology presented in this article can pro-
vide an accurate automatic classification into established
morphological types.

Endnotes
1 http://celltypes.brain-map.org/
2While [6] describe nine interneuron types in L2/3 to

L6, we lacked enough bipolar and neurogliaform cells to
learn classifiers for them. We also grouped small, nest,
and large basket cells into a separate, basket type.

3NeuroSTR is an open source library developed in
our research group in the context of the Human Brain
Project [68]. Its online repository is at https://github.com/
ComputationalIntelligenceGroup/neurostr.

4We restricted this analysis to the MC type as only for
MC we could compare it to an independent classification
by neuroscientists in [14].

5Online repository at https://github.com/Computatio-
nalIntelligenceGroup/bbp-interneurons-classify.

6We used Table 1 in [13] to map between the two
schemes. While the LBC was also common to the two
schemes, Table 1 in [13] maps it to the common basket
type in [14].

7 The online repository: https://github.com/BlueBrain/
NeuroM.

http://celltypes.brain-map.org/
https://github.com/ComputationalIntelligenceGroup/neurostr
https://github.com/ComputationalIntelligenceGroup/neurostr
https://github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify
https://github.com/ComputationalIntelligenceGroup/bbp-interneurons-classify
https://github.com/BlueBrain/NeuroM
https://github.com/BlueBrain/NeuroM
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8 [13] used 1009 digitally reconstructed cells; the 228
cells that we use are the interneurons that they classified
on the basis of morphological parameters, as shown in
Additional file 1: Figure S2 of that paper.

9One of these 20 cells, C040600B2, was shown to the
neuroscientists rotated upside-down, which may have
affected how they classified it.

10We found that in the study by [14], the shortest
axon which allowed at least half of the 42 neuroscientists
involved to characterize an interneuron (i.e., to consider
that the neuron can be classified) was 2805 μm, with the
next shortest being 3197 μm.

11We considered all 228 cells when contrasting our class
labels to those from [14].

12 In our binary classification settings the Kruskal-Wallis
test corresponds to its special case for two samples, the
Wilcoxon–Mann–Whitney test [69, 70]. We keep the
term Kruskal-Wallis as that is the implementation that we
used (R function kruskal.test).

13 The F-measure is the harmonic mean of precision and
recall of a single class. In the ChC versus non-ChC setting,
for example, these correspond to the percentage of cells
classified as ChC which truly are ChC (precision), and
the percentage of ChC cells correctly identified as ChC
(recall). See Section 2.8 in Additional file 1 for details.

14We are ignoring cell C040600B2, which was shown to
the neuroscientists rotated upside-down (this may have
affected how they classified it), hence five out of 19 and
not six out of 20.

15 This value was not reported in [14]; instead we com-
puted it from data from that study, taking into account
only cells that could be clearly classified into a type. See
Section 6 in Additional file 1 for details.

Additional file

Additional file 1: Towards a supervised classification of neocortical
interneuron morphologies. (PDF 1906 kb)
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56. Mihaljević B, Bielza C, Benavides-Piccione R, DeFelipe J, Larrañaga P.
Multi-dimensional classification of GABAergic interneurons with
Bayesian network-modeled label uncertainty. Front Comput Neurosci.
2014;8:150.

https://doi.org/10.1016/j.neuroscience.2017.05.027
https://doi.org/10.1016/j.neuroscience.2017.05.027
http://opac.inria.fr/record=b1127878
https://doi.org/10.3389/fncir.2015.00044
https://www.R-project.org/
https://doi.org/10.1016/S0165-0270(98)00091-0
https://doi.org/10.1007/BF02462102
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