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Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently pro-
posed to deal with multi-dimensional classification problems, where each instance in the data set has to
be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach
for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class var-
iable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach
is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item
Parkinson’s Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkin-
son’s patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic
data sets, Yeast data set, as well as on a real-world Parkinson’s disease data set containing 488 patients.
The experimental study, including comparison with additional Bayesian network-based approaches, back
propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression,
ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of pre-
dictive accuracy as well as the identification of dependence relationships among class and feature variables.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Multi-dimensional classification problem is an extension of the
classical one-dimensional classification, where each instance given
by a vector of m features x ¼ ðx1; . . . ; xmÞ is associated with a vector
of d class values c ¼ ðc1; . . . ; cdÞ rather than a single class value.
Multi-dimensional classification has been motivated by several real-
world applications such as medical diagnosis where a patient may be
suffering from multiple diseases, video or text categorization where a
video or a text document may be assigned to multiple topics, etc. [1].

Multi-dimensional Bayesian network classifiers (MBCs) have
been recently proposed to deal with multi-dimensional classifica-
tion [2–6] providing an accurate modeling of the probabilistic
dependence relationships among all variables, the class variables
included. As Bayesian networks, the first component of the MBCs
is the graphical structure. It partitions the set of class and feature
(predictor) variables into three different subgraphs: class subgraph
representing the dependence relationships between class vari-
ables, bridge subgraph representing the dependence relationships
between class and feature variables, and feature subgraph repre-
senting the dependence relationships between feature variables.
ll rights reserved.

ani).
The second component consists of the parameters that define the
conditional probability distribution of each variable given its par-
ent set in the structure.

In this paper, we propose a Markov blanket-based approach for
learning MBCs from data named MB-MBC. Based on the fact that the
classification performance is unaffected by parts of the structure
that lie outside the Markov blanket of the class variable, MB-MBC
starts by building the Markov blanket around each class variable
using the HITON algorithm [7,8], then determines edge directional-
ity over all three MBC subgraphs. We evaluated the MB-MBC algo-
rithm using randomly generated data sets, and then we applied
it to predict the European Quality of Life-5 Dimensions (EQ-5D)
from the 39-item Parkinson’s Disease Questionnaire (PDQ-39).

In fact, EQ-5D is a generic health-related quality of life (HRQoL)
measure usable in general populations and in any disorder [9,10].
It is considered a valid instrument and is recommended for evalu-
ation of HRQoL in Parkinson’s disease (PD) [11,12]. EQ-5D contains
five items, namely mobility, self-care, usual activities,
pain/discomfort, and anxiety/depression; each item has
three options of response: no problems, some problems and severe
problems. However, PDQ-39 is a specific HRQoL instrument widely
used in PD and it is also recommended for use in this disorder [12].
It contains 39 questions each scoring on a five-point scale: never,
occasionally, sometimes, often and always [13–16].

http://dx.doi.org/10.1016/j.jbi.2012.07.010
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Fig. 1. Example of an MBC structure.
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In our study, the prediction of EQ-5D values from PDQ-39 is
modeled as a multi-dimensional classification problem where each
instance given by an input vector of 39 features x ¼ ðx1; . . . ; x39Þ
(i.e., PDQ-39) is associated with a vector of 5 class values
c ¼ ðc1; . . . ; c5Þ (i.e., EQ-5D). For empirical evaluation, we firstly
performed experiments on synthetic and Yeast data sets to assess
the predictive performance of MB-MBC and its ability to efficiently
recover the initial MBC graphical structure, then we tested it on a
real-world Parkinson’s disease data set containing 488 patients.
We compared MB-MBC against three different Bayesian network-
based approaches, namely class-bridge decomposable MBC
(CB-MBC), independent Marokov blankets (IndepMBs), and
independent PC Bayesian networks (IndepPC-BNs), as well as
against back propagation for multi-label learning (BP-MLL),
multi-label k-nearest neighbor (ML-kNN), and commonly used
methods to predict EQ-5D from HRQol specific instruments, like
multinomial logistic regression (MNL), ordinary least squares
(OLS), and censored least absolute deviations (CLAD). Experimental
results were promising in terms of predictive performance, the
identification of dependence relationships among class variables,
that other approaches were unable to detect, and the identification
of dependence relationships between class and feature variables.

The remainder of this paper is organized as follows. Section 2
briefly presents Bayesian networks and multi-dimensional Bayes-
ian network classifiers; then introduces the proposed MB-MBC

learning approach. Subsequently, Section 3 describes the experi-
mental setting including the used synthetic, Yeast and Parkinson’s
data sets, the approaches considered for comparison, and the eval-
uation metrics. Section 4 presents and discusses the experimental
results, and finally, Section 5 sums up the paper with some conclu-
sions and future works.

2. Methods

2.1. Bayesian networks

A Bayesian network [17,18] over a set of discrete random vari-
ables U ¼ fX1; . . . ;Xng, n P 1, is a pair B ¼ ðG;HÞ. G ¼ ðV ;AÞ is a di-
rected acyclic graph (DAG) whose vertices V correspond to
variables in U and whose arcs A represent direct probabilistic
dependencies between the vertices. H is a set of conditional prob-
ability distributions such that hxi jpaðxiÞ ¼ pðxijpaðxiÞÞ defines the con-
ditional probability of each possible value xi of Xi given a set value
paðxiÞ of PaðXiÞ, where PaðXiÞ denotes the set of parents of Xi in G.

A Bayesian network B represents a joint probability distribution
over U factorized according to structure G:

pðX1; . . . ;XnÞ ¼
Yn

i¼1

pðXijPaðXiÞÞ� ð1Þ

The probability distribution p satisfies certain conditional inde-
pendencies between the random variables in U as follows:

Definition 1. Two set of variables X and Y are conditionally
independent given some set of variables Z, denoted as IðX;YjZÞ, iff
PðXjY;ZÞ ¼ PðXjZÞ for any assignment of values x, y, z of X, Y, Z,
respectively, such that PðZ ¼ zÞ > 0.

Definition 2. A Markov blanket of a variable X, denoted as MB(X),
is a minimal set of variables with the following property:
IðX; SjMBðXÞÞ holds for every variable subset S with no variables
in MBðXÞ [ X.

In other words, MB(X) is a minimal set of variables conditioned
by which X is conditionally independent of all the remaining vari-
ables. Under the faithfulness assumption, ensuring that all the con-
ditional independencies in the data distribution are strictly those
entailed by G, MB(X) consists of the union of the set of parents, chil-
dren, and parents of children (i.e., spouses) of X [19].
2.2. Multi-dimensional Bayesian network classifiers

Definition 3. An MBC [4] is a Bayesian network B ¼ ðG;HÞ where
the structure G ¼ ðV ;AÞ has a restricted topology. The set of n
vertices V is partitioned into two subsets: VC ¼ fC1; . . . ;Cdg; d P 1,
of class variables and VX ¼ fX1; . . . ;Xmg;m P 1, of feature variables
ðdþm ¼ nÞ. The set of arcs A is partitioned into three subsets AC ;AX

and ACX , such that:

� AC # VC � VC is composed of the arcs between the class vari-
ables having a subgraph GC ¼ ðVC ;ACÞ – class subgraph – of G
induced by VC .
� AX # VX � VX is composed of the arcs between the feature vari-

ables having a subgraph GX ¼ ðVX ;AXÞ – feature subgraph – of G
induced by VX .
� ACX # VC � VX is composed of the arcs from the class variables to

the feature variables having a subgraph GCX ¼ ðV ;ACXÞ – bridge
subgraph – of G inuced by V [2].

Classification with an MBC under a 0–1 loss function is equiva-
lent to solving the most probable explanation (MPE) problem, i.e.,
for a given fact x ¼ ðx1; . . . ; xmÞ we have to obtain

c� ¼ ðc�1; . . . ; c�dÞ ¼ arg max
c1 ;...;cd

pðC1 ¼ c1; . . . ;Cd ¼ cdjxÞ� ð2Þ

Example 1. An example of an MBC structure is shown in Fig. 1. VC
contains four class variables, VX includes seven features. Using (1),
we have

max
c1 ;...;c4

pðC1 ¼ c1; . . . ;C4 ¼ c4jxÞ ¼ max
c1 ;...;c4

pðc1jc2; c3Þpðc2Þpðc3Þpðc4Þ

� pðx1jc2; x4Þpðx2jc1; c2Þpðx3jc4Þpðx4jc1Þ
� pðx5jx2Þpðx6jc3; x3; x7Þpðx7jc4Þ�
2.3. MB-MBC: learning MBCs using Markov blankets

Let D be a data set of N instances containing a value assignment
for each variable X1; . . . ;Xm;C1; . . . ;Cd, i.e., D ¼ fðxð1Þ; cð1ÞÞ;
. . . ; ðxðNÞ; cðNÞÞg. Our proposed approach aims to find an MBC that
best fits the available data set and ensures afterwards an accurate
and efficient classification for the new unlabeled instances.

In recent years, several specialized Markov blanket learning
methods have been proposed in the literature, such as GS, TPDA,
IAMB and its variants, MMHC, MMMB and HITON (see [7,8] and
the references therein). In this paper, we only consider and adapt
the HITON algorithm [7,8] extended to the context of multi-dimen-
sional Bayesian network classifiers. In fact, the HITON algorithm
was empirically proven to outperform most of the state-of-the-
art Markov blanket discovery algorithms in terms of combined
classification performance and feature set parsimony [7].

Basically, the idea of our Markov blanket MBC (MB-MBC) learn-
ing algorithm consists of firstly determining the Markov blanket
around each class variable using the HITON algorithm [7,8] and
then specifying directionality over the MBC subgraphs. HITON
identifies the Markov blanket of each class variable in a two-phase
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scheme, HITON-MB and HITON-PC, outlined respectively in Algo-
rithms 1 and 2.

Algorithm 1. HITON-MB(Ci)

1. PCðCiÞ  HITON-PC(Ci)
2. for every variable T 2 PCðCiÞ do
3. PCðTÞ  HITON-PCðTÞ
4. end for
5. MBðCiÞ  PCðCi)
6. S f

S
T2PCðCiÞPCðTÞg n fPCðCiÞ [ Cig

7. for every variable X 2 S do
8. Retrieve a subset Z s.t. IðX; CijZÞ
9. for every variable T 2 PCðCiÞ s.t. X 2 PCðTÞ
10. if – gIðX;CijZ [ fTgÞ then
11. Insert X into MBðCiÞ
12. end if
13. end for
14. end for
15. return MBðCiÞ

Step 1 of HITON-MB identifies the parents and children of each
class variable Ci, denoted PC(Ci), by calling the HITON-PC algo-
rithm. Then, it determines the parents-children PC set for every
member T of PC(Ci) (steps 2–4). The Markov blanket set MB(Ci) is
initialized with PC(Ci) (step 5) and set S includes potential spouses
of Ci (step 6). From steps 7 to 14, HITON-MB loops over all mem-
bers of S to identify correct spouses of Ci. MB(Ci) is finally returned
in step 15.

HITON-PC starts with an empty set of candidates PC(T), ranks
the variables X in the set OPEN ¼ U n fTg by priority of inclusion
according to I(X, T), and discards variables having I(X, T) = 0 (steps
3 and 4). Then, for every new variable inserted into PC(T), it checks
if there is any variable inside PC(T) that is independent of T given
some subset Z. In this case, this variable will be removed from
PC(T) (steps 6–11). These steps are iterated until there are no more
variables in OPEN. Finally, PC(T) is filtered using the symmetry cri-
terion (steps 13–17). In fact, for every X 2 PC(T), the symmetrical
relation holds iff T 2 PC(X). Otherwise, i.e., if T R PC(X), X will be re-
moved from PC(T). At the end of this step, we obtain PC(T) [7].

Algorithm 2. HITON-PC(T)

1. PCðTÞ  ;
2. OPEN  U n fT [ PCðTÞg
3. Sort the variables X in OPEN in descending order according

to I(X, T)
4. Remove from OPEN variables X having I(X, T) = 0
5. repeat
6. Insert at the end of PC(T) the first variable in OPEN and

remove it from OPEN
7. for every variable X 2 PCðTÞ do
8. if 9 Z # PCðTÞ n fXgs.t. IðX; TjZÞthen
9. Remove X from PC(T).
10. end if
11. end for
12. until OPEN = ;
13. forevery variable X 2 PCðTÞ do
14. if T R PCðXÞ then
15. Remove X from PC(T)
16. end if
17. end for
18. return PC(T).
Unlike the HITON algorithm that only determines the Markov
blanket of a single target variable, MB-MBC considers many target
variables (all the class variables), then induces the MBC graphical
structure. Given the MBC definition, the direct parents of any class
variable Ci; i ¼ 1; . . . ; d, can only be among the remaining class vari-
ables, whereas direct children or spouses of Ci can include either
class or feature variables. We can then easily deduce the different
MBC subgraphs based on the results of the HITON algorithm as
follows:

� Class subgraph: we firstly insert an edge between each class var-
iable Ci and any class variable belonging to its corresponding
parents-children set PCðCiÞ. Then, we direct all these edges
using the PC algorithm’s edge orientation rules [20].
� Bridge subgraph: this is built by inserting an arc from each class

variable Ci to every feature variable belonging to PCðCiÞ.
� Feature subgraph: for every feature X in the set MBðCiÞn PC(Ci),

i.e., for every spouse X, we insert an arc from X to the corre-
sponding common child given by PCðXÞ \ PCðCiÞ.

Note finally that, being based on HITON algorithm, that is proved to
be scalable [7,8], and being defined as a filter constraint-based
approach that locally determines the Markov blanket around each
class variable, MB-MBC is scalable with respect to data set size and
dimensionality. Moreover, using independence tests instead of
accuracy metrics (used by wrapper approaches such as CB-MBC

algorithm [3]) considerably lightens the computational burden,
especially when the data sets include a large number of variables
or instances.
3. Experimental study

3.1. Data sets

In order to evaluate our proposed approach, we firstly per-
formed experiments on synthetic data sets, Yeast data set, then
on a real-world Parkinson’s disease data set.

3.1.1. Synthetic data sets
We randomly generated five data sets using the MBC structure

presented in Fig. 1 containing four class and seven feature vari-
ables. Although the structure is the same, each data set is sampled
from a different, randomly defined, probability distribution using
the probabilistic logic sampling method [21]. All class and feature
variables are binary, and each generated data set contains 2000 in-
stances. Fivefold cross-validation experiments were carried out on
each data set and each learning algorithm (see Section 3.2).

3.1.2. Yeast data set
The Yeast data set [22] is a biological data set where genes in

the yeast Saccharomyces cerevisiae are associated with several
biological functions at the same time. The Yeast data set contains
in total 2417 instances. Genes are represented by 103 numeric fea-
ture variables, and biological functions are represented by 14 bin-
ary class variables. Since MBCs are defined for discrete variables,
we used a static, global, supervised and top-down discretization
algorithm, called class-attribute contingency coefficient [23], to
discretize all the continuous feature variables. After discretization,
each feature variable has four possible values ranging from 0 to 3.
As with synthetic data sets, fivefold cross-validation was per-
formed on the Yeast data set.

3.1.3. Parkinson’s disease data set
Parkinson’s disease data set was obtained from an international

multipurpose database collected by the National Center of
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Epidemiology, Carlos III Institute of Health, Madrid. Patients with
diagnosis of PD, in all disease stages, were included. In total, the
analyzed data set contains 488 patients. For each patient, we have
information about the PDQ-39 items represented in Table 6 (i.e. 39
feature variables) each with five possible values: never, occasion-
ally, sometimes, often and always, coded in the data set using
numbers ranging from 0 (never) to 4 (always); and the correspond-
ing EQ-5D (i.e. 5 class variables): mobility, self-care, usual
activities, pain/discomfort and anxiety/depression

coded with numbers ranging from 1 (no problems) to 3 (severe
problems).

The objective is to simultaneously predict the 5 class values of
EQ-5D from PDQ-39 using MB-MBC algorithm. Given the EQ-5D val-
ues, to complement them, the corresponding utility score (a.k.a.
utility index) could also be induced using the UK general scoring
system [24]. For instance, let’s assume that we obtain an EQ-5D
equal to c ¼ ð1;1;2;2;3Þ indicating that the considered patient
has no problems with mobility and self-care; some problems
with usual activities and pain/discomfort; and severe
problems with anxiety/depression. Based on UK scoring sys-
tem [24], EQ-5D utility index is 1 � 0.081 � 0.036 � 0.123 �
0.236 � 0.269 = 0.255.

To summarize, the details of the considered data sets are given
in Table 1.

3.2. Approaches

We compared MB-MBC against three Bayesian network-based
approaches: CB-MBC a general approach for learning MBCs from
data, IndepMBs a binary relevance version of MB-MBC, and Inde-

pPC-BNs recently proposed in [25] to predict EQ-5D from Health
Surveys SF-12. We also considered for comparison the two state-
of-the-art multi-label classification methods BP-MLL and ML-kNN.
Note that, multi-label classification methods can only deal with
multi-dimensional problems where all class variables are binary.
Therefore, BP-MLL and ML-kNN were only applied to synthetic
and Yeast data sets, containing binary class variables, but not used
to analyze the Parkinson’s disease problem since the EQ-5D class
variables are not binary. Moreover, we compared MB-MBC against
three commonly used approaches to predict EQ-5D from HRQol
specific instruments, namely, MNL, OLS and CLAD, the last two
being based on the utility score. In what follows, we briefly present
more details for each considered approach:

� Class-bridge decomposable MBC algorithm (CB-MBC) [3]: learns
class-bridge (CB) decomposable MBCs based on a greedy for-
ward selection wrapper approach optimizing the accuracy of
the model given the training data set. CB-MBC firstly learns an
initial bridge subgraph with a number of maximal connected
components equal to the number of class variables, then it
learns an initial feature subgraph. Next, as long as the number
of maximal connected components is greater than one and
there is an accuracy improvement, it iteratively and sequen-
tially merges together the components and updates the bridge
and feature subgraphs accordingly.
� Independent Markov blankets algorithm (IndepMBs): learns

independently a Bayesian network classifier for each class var-
iable using the same HITON algorithm [7,8]. Therefore, there
Table 1
Description of the data sets used in the experiments

Data set #Classes #Features #Instances

Synthetic 4 7 2000
Yeast 14 103 2417
Parkinson’s disease 5 39 488
are no arcs between class variables, the classification is inde-
pendently performed for each class variable, and the individual
results are then aggregated to form the predicted class vector.
� Independent PC Bayesian networks (IndepPC-BNs): The PC algo-

rithm [20] is a constraint-based approach for learning Bayesian
networks from data. It starts with a fully connected DAG, then
sequentially removes edges between nodes based on statistical
independence tests. Similar to Le and Doctor [25] that recently
applied this approach to predict EQ-5D utility index from
Health Surveys SF-12, we used the PC algorithm to learn inde-
pendently a Bayesian network for each class variable in EQ-5D.
� Back propagation for multi-label learning (BP-MLL) [26]: is

derived from the popular back propagation algorithm through
modifying its error function with a new function that takes into
account the characteristics of multi-label learning, i.e., the
labels belonging to an instance should be ranked higher than
those not belonging to that instance.
� Multi-label k-nearest neighbor (ML-kNN) [27]: It extends the k-

nearest neighbor lazy algorithm (kNN) to the multi-label frame-
work. Basically, for each test instance, it firstly identifies the k
nearest neighbors in the training data, then, it predicts the label
set based on the statistical information gained from the label
sets of the neighboring instances and the maximum a posteriori
principle.
� Multinomial logistic regression (MNL) [25,28]: Using the multino-

mial logistic regression on an input set of feature variables, this
approach returns the estimated posterior probabilities of each
class value; then the class value with the highest probability
is selected. Similar to IndepMBs and IndepPC-BNs, MNL is
applied independently to each class variable, and the results
are aggregated to obtain the predicted class vector.
� Ordinary least squares (OLS): is one of the mostly used methods

for mapping specific HRQoL instruments such as Health Surveys
SF-12 and PDQ-8 into a generic utility index [25,29,30]. In the
OLS model, the EQ-5D utility index is directly regressed on
the PDQ-39 items. In other words, OLS does not provide the 5
estimated class values of EQ-5D, but only returns the estimated
EQ-5D utility index.
� Censored least absolute deviation (CLAD) [31]: is a generalization

of the least absolute deviations method. Similar to OLS, CLAD is
widely used to convert specific HRQoL instruments into a gen-
eric utility index [25,29,32], and it only estimates EQ-5D utility
index without predicting the 5 class values of EQ-5D.

All methods were run in Matlab R2010b on a laptop 2.2 GHz with
6 GB RAM using Windows operating system. The HITON and PC
algorithms were run using Causal Explorer Toolkit [33] provided
as compiled Matlab functions, and G2 statistical test was used to
evaluate the conditional independencies between variables with
a significance level a = 0.01. BP-MLL and ML-kNN were run using
the Matlab packages available at http://lamda.nju.edu.cn/data-
code/BPMLL.htm and http://lamda.nju.edu.cn/datacode/
MLkNN.htm, respectively. For the BP-MLL algorithm, the number
of training epochs was set to 20, and the number of hidden neurons
was set to 3 for the synthetic data set and 20 for the Yeast data set;
and for ML-kNN the number of clusters was to set to 3 for the syn-
thetic data set and 7 for the Yeast data set. Note also that OLS and
CLAD were only considered for comparison on Parkinson’s disease
data set since they do not predict class values but directly return an
utility index. Fig. 2 summarizes the approaches used for predicting
EQ-5D from PDQ-39.

3.3. Evaluation metrics

We used the following metrics to assess the predictive perfor-
mance of the considered approaches:

http://lamda.nju.edu.cn/datacode/BPMLL.htm
http://lamda.nju.edu.cn/datacode/BPMLL.htm
http://lamda.nju.edu.cn/datacode/MLkNN.htm
http://lamda.nju.edu.cn/datacode/MLkNN.htm
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� The mean accuracy over the d class variables:

Estimated accuracies (mean ± std. deviation) over synthetic data set.

Method Mean accuracy Global accuracy

MB-MBC 0:7204� 0:0313 0:3159� 0:0502
Accm ¼
1
d

Xd

i¼1

1
N

XN

l¼1

dðĉli; cliÞ; ð3Þ
CB-MBC 0:7145� 0:0321 0:2878� 0:0590
IndepMBs 0:7202� 0:0323 0:2903� 0:0535
IndepPC-BNs 0:7160� 0:0400 0:2724� 0:0626
BP-MLL 0:7119� 0:0617 0:2533� 0:1200
ML-kNN 0:6934� 0:0376 0:2505� 0:0450
MNL 0:7056� 0:0392 0:2739� 0:0464
where N is the size of the test set, ĉli is the Ci class value predicted by
the model for sample l, and cli denotes its corresponding true value.
dðĉli; cliÞ ¼ 1 if the predicted and true class values are equal, i.e.,
ĉli ¼ cli, and dðĉli; cliÞ ¼ 0 otherwise.
� The global accuracy over the d-dimensional class variable:
Accg ¼
1
N

XN

l¼1

dðĉl; clÞ� ð4Þ
Table 3
Estimated accuracies (mean ± std. deviation) over Yeast data set.

Method Mean accuracy Global accuracy

MB-MBC 0:7602� 0:0208 0:1423� 0:0249
CB-MBC 0:7762� 0:0067 0:0741� 0:0133
IndepMBs 0:7624� 0:0035 0:0608� 0:0156
IndepPC-BNs 0:7716� 0:0013 0:0240� 0:0197
BP-MLL 0:7417� 0:0180 0:0414� 0:0269
ML-kNN 0:7815� 0:0061 0:1018� 0:0098
MNL 0:7810� 0:0066 0:1262� 0:0163
In this more strict case, the (d-dim) vector of predicted classes ĉl is
compared to the vector of true classes cl, so that we have
dðĉl; clÞ ¼ 1 if both vectors are equal in all their components, i.e.,
ĉl ¼ cl, and dðĉl; clÞ ¼ 0 otherwise.

Moreover, for the experiments over PD data set, we used the fol-
lowing metrics, commonly used in comparison with MNL, OLS
and CLAD methods [25]:

� The mean squared error (MSE) between the true and predicted
EQ-5D utility scores.
� The mean absolute error (MAE) between the true and predicted

EQ-5D utility scores.
� The square of the Pearson product-moment correlation (R2)

between the true and predicted EQ-5D utility scores.
� The absolute difference (AbsDiff) between the true and pre-

dicted EQ-5D utility mean scores, i.e. the absolute difference
is computed between the mean of all true EQ-5D utility scores
and the mean of all predicted EQ-5D utility scores.

Notice that different metrics guide the tested approaches. In fact,
mean and global accuracy guide CB-MBC, MSE guides OLS, MAE
guides CLAD, conditional likelihood guides MNL, whereas the rest
of the approaches, MB-MBC, Indep-MBs and IndepPC-BNs, are
guided by G2 based hypothesis test.

4. Results and discussion

4.1. Synthetic data sets

Table 2 shows the classification performance results for the
fivefold cross-validation experiments performed over the five syn-
thetic data sets, with mean values and standard deviations for the
mean and global accuracy and each method. The best result for
each metric is written in bold. For the mean accuracy, MB-MBC
and IndepMBs present a similar predictive performance (72%),
slightly better than other approaches. For the global accuracy,
MB-MBC outperforms the remaining approaches with more than
31%. Using the Friedman test followed by the Tukey–Kramer post
hoc test with a significance level equal to 0.05, it turns out that
MB-MBC is significantly better than BP-MLL and ML-kNN only for
Fig. 2. Approached used for pred
the global accuracy. For all remaining methods and for the mean
accuracy, the differences in classification performance are not sta-
tistically significant.

4.2. Yeast data set

Table 3 reports the classification performance results for the
fivefold cross-validation experiments performed over Yeast data
set. The best result for each metric is written in bold. ML-kNN pre-
sents the best mean accuracy (78%) followed by MNL and CB-MBC

with a slightly lower predictive performance. For the global accu-
racy, MB-MBC outperforms the remaining approaches with 14%.
Using the Friedman test followed by the Tukey–Kramer post hoc
test with a significance level equal to 0.05, it turns out that (1)
for mean accuracy, ML-kNN and MNL are only significantly better
than BP-MLL, and (3) for global accuracy, MB-MBC and MNL are only
significantly better than IndepPC-BNs and BP-MLL. For all
remaining methods, the differences in predictive performance are
not statistically significant.

4.3. Parkinson’s disease data set

For the experiments over the Parkinson’s disease data set, we
applied MB-MBC and IndepMBs with a restriction of the Markov
blanket set of each class variable MB(Ci) to the set of its parents-
children PC(Ci). This restriction was introduced based upon the the-
oretical discussion introduced by Aliferis et al. [8] and the empiri-
cal observation that including more spouses leads to a less accurate
MBC classifier. In fact, Aliferis et al. [8] discussed in Section 4.6 five
plausible scenarios explaining the better performance of substitut-
ing the PC set in place of the MB set. The third scenario applies in
icting EQ-5D from PDQ-39.
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our case, where the spouses have connecting paths to the class
variables that cannot be blocked due to the small sample size,
i.e., the conditional independencies between the spouses and the
class variables could not be established due to the small number
of instances in the PD data set (including only 488 instances).

Table 4 shows the classification performance results for the
fivefold cross-validation experiments performed on PD data set
with mean values and standard deviations for each metric and
each method. Recall that OLS and CLAD only return the utility in-
dex; thus, in order to compute the mean and global accuracies
for OLS and CLAD, we proceeded by retrieving the EQ-5D class val-
ues as follows: first, we look for the utility index from the UK scor-
ing list [24] closest to the one returned by OLS and CLAD, then we
determine the EQ-5D vector corresponding to that index.

In Table 4, MB-MBC presents the best mean accuracy (71%),
whereas surprisingly IndepMBs outperforms in the global accu-
racy the remaining approaches with 20%. As with the synthetic
data sets, we ran a multiple comparison test of all method perfor-
mance using the Friedman test followed by the Tukey–Kramer post
hoc test with a significance level equal to 0.05. It turns out that, for
both mean and global accuracy, MB-MBC and IndepMBs results are
only significantly better than OLS and CLAD methods.

In addition, Table 5 presents results for MSE, MAE, R2 and Abs-
Diff metrics. The best result for each metric is written in bold. Once
again, MB-MBC outperforms other predictive approaches in terms of
MSE and MAE. IndepMBs presents the best R2 and MNL produces
the best AbsDiff.

Note that, both OLS and CLAD methods performed poorly for all
the performance metrics in Tables 4 and 5. As pointed out by Le
and Doctor [25], this may be due to certain limitations of these
regression methods such as predictive values that are outside the
domain of the preference-based target, ceiling/floor effects, and
assignment to health states that are not defined in the UK scoring
list. Previous studies testing OLS and CLAD for predicting the EQ-
5D utility index from the Health Surveys SF-12 [25,32], or from
PDQ-8, the short version of PDQ-39 [10], proved that OLS and CLAD

methods induce very similar results with a possible better perfor-
mance of the simple OLS over the more theoretically justifiable
CLAD. In our case, OLS method resulted in a slightly better MSE,
MAE and R2 than CLAD, but for the absolute difference between
the true and the predicted EQ-5D mean scores, CLAD performed
better.
Table 4
Estimated accuracies (mean ± std. deviation) over Parkinson’s data set.

Method Mean accuracy Global accuracy

MB-MBC 0:7119� 0:0338 0:2030� 0:0718
CB-MBC 0:6807� 0:0285 0:1865� 0:0429
IndepMBs 0:7009� 0:0427 0:2051� 0:0835
IndepPC-BNs 0:6587� 0:0636 0:1867� 0:0937
MNL 0:6926� 0:0430 0:1802� 0:0713
OLS 0:4201� 0:0252 0:0123� 0:0046
CLAD 0:4254� 0:0488 0:0143� 0:0171

Table 5
MSE, MAE, R2 and AbsDiff (mean ± std. deviation) over Parkinson’s data set.

Method MSE MAE

MB-MBC 0:0650� 0:0156 0:1737� 0:
CB-MBC 0:0905� 0:0167 0:1973� 0:
IndepMBs 0:0699� 0:0188 0:1784� 0:
IndepPC-BNs 0:0909� 0:0909 0:2026� 0:
MNL 0:0759� 0:0152 0:1922� 0:
OLS 0:1832� 0:0373 0:3502� 0:
CLAD 0:1962� 0:0360 0:3583� 0:
MNL performed quite well compared to OLS and CLAD as well as
compared to the Bayesian network-based approaches. For instance,
it had better results for mean accuracy, MSE, MAE, and R2 than
IndepPC-BNs and CB-MBC; it also resulted in the best AbsDiff
compared to all the remaining approaches. However, MNL pre-
sented a lower global accuracy compared to all Bayesian net-
work-based approaches. This can be explained by the fact that
taking into account the probabilistic dependence relationships
among class and feature variables ensures a better predictive per-
formance, and in this context, MB-MBC and IndepMBs performed
better than CB-MBC and IndepPC-BNs through determining the
Markov blanket around each class variable.

Moreover, contrary to MNL, OLS and CLAD, Bayesian network-
based approaches present also the merit of representing the rela-
tionships between all variables through their graphical structure
component. In our study, in order to investigate the dependence
relationships among EQ-5D and PDQ-39 variables, we first exam-
ine in Fig. 3 the graphical structure of the MBC network learnt by
the MB-MBC algorithm from the full PD data set, then compare it
to the graphical structures learnt by CB-MBC, IndepMBs and Inde-

pPC-BNs.
Firstly, the class subgraph in Fig. 3 (red arcs) shows associations

between the three class variables mobility, self-care and
usual activities which may reveal the strong relevance be-
tween these classes. Pain/discomfort is not directly related to
any other class variable, but its Markov blanket includes the class
usual activities which proves as well the strong relevance be-
tween both classes. Anxiety/depression has no direct connec-
tions with the remaining classes. This can be explained by the
fact that anxiety/depression is more related to emotional
problems rather than physical health problems (i.e. mobility,
self-care, usual activities and pain/discomfort).

Secondly, the bridge subgraph (blue arcs) reveals direct depen-
dence relationships between EQ-5D classes and PDQ-39 features.
Table 6 lists the PDQ-39 features grouped into eight domains:
Mobility, activities of daily living, emotional well-being, stigma, so-
cial support, cognitions, communication and bodily discomfort.
Each domain is depicted in Fig. 3 with a different color. We have
the following dependence relationships from EQ-5D to PDQ-39:

� Mobility is directly associated with pdq1, pdq4, pdq6, and
pdq7.
� Self-care is directly associated with pdq12.
� Usual activities is directly associated with pdq1, pdq2,

pdq3, pdq5, pdq6, pdq8, pdq10, pdq12 and pdq15.
� Pain/discomfort is directly associated with pdq2, pdq3,

pdq38.
� Anxiety/depression is directly associated with pdq17,

pdq18.

Note that the detected associations are very appropriate and
clearly related to mobility, self-care and usual activities.
The selected pdq variables associated with these three class vari-
ables exclusively pertain to mobility and activities of daily living
R2 AbsDiff

0316 0:5996� 0:0683 0:0659� 0:0373
0298 0:4094� 0:0860 0:0790� 0:0541
0328 0:6026� 0:0653 0:0737� 0:0315
0391 0:4602� 0:1379 0:0863� 0:0670
0284 0:4935� 0:0961 0:0503� 0:0331
0422 0:0186� 0:0177 0:0943� 0:0388
0395 0:0165� 0:0155 0:0779� 0:0278



Table 6
The Parkinson’s Disease Questionnaire (PDQ-39) items.

Mobility
pdq1 Had difficulty doing the leisure activities you would like to do
pdq2 Had difficulty after your home e.g. DIY, housework, cooking
pdq3 Had difficulty carrying bags of shopping
pdq4 Had problems walking half a mile
pdq5 Had problems walking 100 yards
pdq6 Had problems getting around the house as easily as you would like
pdq7 Had problems getting around in public
pdq8 Needed someone else to accompany you when you went out
pdq9 Felt frightened or worried about falling over in public
pdq10 Been confined to the house more than you would like

Activities of daily living
pdq11 Had difficulty washing yourself
pdq12 Had difficulty dressing yourself
pdq13 Had problems doing up buttons or shoe laces
pdq14 Had problems writing clearly
pdq15 Had difficulty cutting up your food
pdq16 Had difficulty holding a drink without spilling it

Emotional well-being
pdq17 Felt depressed
pdq18 Felt isolated and lonely
pdq19 Felt weepy or tearful
pdq20 Felt angry or bitter
pdq21 Felt anxious
pdq22 Felt worried about your future

Stigma
pdq23 Felt you had to conceal you Parkinson’s from people
pdq24 Avoided situations which involve eating or drinking in public
pdq25 Felt embarrassed in public due to having Parkinson’s disease
pdq26 Felt worried by other people’s reaction to you

Social support
pdq27 Had problems with your close personal relationships
pdq28 Lacked support in the ways you need from your spouse or partner
pdq29 Lacked support in the ways you need from your family or close

friends

Cognitions
pdq30 Unexpectedly fallen asleep during the day
pdq31 Had problems with your concentration, e.g. when reading or

watching TV
pdq32 Felt your memory was bad
pdq33 Had distressing dreams or hallucinations

Communication
pdq34 Had difficulty with your speech
pdq35 Felt unable to communicate with people properly
pdq36 Felt ignored by people

Bodily discomfort
pdq37 Had painful muscle cramps or spasms
pdq38 Had aches and pains in your joints or body
pdq39 Felt unpleasantly hot or cold

Fig. 3. MBC graphical structure with 5 classes (EQ-5D) and 39 features (PDQ-39) learnt by MB-MBC. The class subgraph (red arcs) shows probabilistic dependence
relationships between classes, the bridge subgraph (blue arcs) shows dependence relationships from classes to features, and the feature subgraph is empty. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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domains, which cover the main information about PD. In fact, PD is
a neurodegenerative disorder characterized by motor manifesta-
tions (bradykinesia, rest tremor and balance impairment) and
non-motor symptoms (depression, psychosis and sleep distur-
bance) [34]; and for the huge majority of PD patients, from earliest
to most advanced stages, the common perceived health problems
are reflected as limitations for mobility and activities of daily living,
whereas the most prevalent non-motor symptoms are associated
with the impact on patients’ health status perception (pain and
depression, for example).

For pain/discomfort, the associations are well explained, as
a whole, from the point of view of bone and joint disorders
(pdq38), mainly. There are other types of pain in PD, more difficult
to associate with these findings. Perhaps, pain due to dystonia in
off state can also be related, in some way, with those selected
PDQ-39 items. Distinction between the types of pain that may be
present in PD is not easy.

For anxiety/depression, it seems that depression is quite
well represented by the detected pdq items, but not the anxiety.
In fact, there are PDQ-39 items about anxiety (pdq21 about feeling
anxious, pdq22 about feeling worried about the future), but they
do not appear in association with the EQ-5D class variable anxi-

ety/depression. This can be explained by the well-known close
relationship between depression and anxiety. A useful representa-
tion of this connection is made evident with the Hospital Anxiety
and Depression scale, a measure furnishing scores for rating anxi-
ety and depression separately but also usable as a unique score of
emotional distress [35,36].

Taking the previous arguments into account, the findings in this
study have sense from a clinical point of view. Moreover, EQ-5D is
more restricted in content than the PDQ-39, explaining why sev-
eral components of the PDQ-39, in addition to the most immedi-
ately relatable (for example, pain), can converge on a domain of
the EQ-5D. Therefore, we may conclude that the combination of
the selected variables in the network properly represents the rela-
tionships between the generic (EQ-5D) and specific (PDQ-39)
instruments, and covers both motor and non-motor symptoms of
PD.

The feature subgraph is empty due to the restriction of the Mar-
kov blanket set of each class variable MB(Ci) to the set of its parents
children PC(Ci), that is, no feature spouses are allowed and thereby
the parents of each feature variable can be only among class vari-
ables. Finally, notice that several features are also not present in
Fig. 3 since no associations were detected between them and the
EQ-5D class variables. These features are considered irrelevant



Fig. 4. MBC graphical structure learnt by CB-MBC.
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and this may be due to the lack of instances of these features and/
or their low interactions with the other variables in the analyzed
data set.

For structural comparison, we depict in Figs. 4–6, the graphical
structures learnt by CB-MBC, IndepMBs and IndepPC-BNs from
the full PD data set, respectively.

As shown in Fig. 4, CB-MBC fails to detect any direct dependence
relationship among the EQ-5D class variables, i.e., the class sub-
graph is empty. For the bridge subgraph, and similar to MB-MBC,
the following dependence relationships are detected: mobility
is associated with pdq4 and pdq7, self-care with pdq12, usual
activities with pdq2, pain/discomfort with pdq3 and
pdq38, and anxiety/depression with pdq17. Moreover, addi-
tional arcs are discovered in the bridge subgraph between the
EQ-5D class variables and pdq9, pdq21, pdq23, pdq25, pdq28,
pdq30, pdq32 and pdq39. Regarding the feature subgraph (green
arcs), only three arcs were added between pdq11 and pdq23,
pdq12 and pdq28, and pdq21 and pdq27.

Fig. 5 shows the five Markov blanket-based Bayesian network
classifiers learnt independently for each EQ-5D class variable by
IndepMBs. Being based on the same HITON algorithm [7,8], Inde-
pMBs discovered similar dependence relationships between the
EQ-5D and the pdq items, as MB-MBC does. However, as it can be
observed, the main drawback of IndepMBs is its inability to detect
the dependence relationships between the different EQ-5D class
variables and their simultaneous interactions with the pdq items.

Additionally, Fig. 6 presents the graphical structure of the
Bayesian network learnt by IndepPC-BNs for the mobility class
Fig. 5. Graphical structures learnt by I
variable. Many dependence relationships are added between the
pdq items, and as determined by MB-MBC and Indep-MBs, mobil-
ity is only directly associated with pdq1, pdq4, pdq6 and pdq7.
Similar conclusions are obtained for the Bayesian network graphi-
cal structures learnt by IndepPC-BNs for the class variables self-
care, usual activities, pain/discomfort, and anxiety/

depression (details and graphs not shown). As in IndepMBs,
the main drawback of IndepPC-BNs is that each network is learnt
independently for each class variable, and thus interactions be-
tween class variables could not be detected.

Finally, the computation times consumed by each method on
each data set are reported in Table 7, measured in seconds for syn-
thetic and Parkinson’s disease data sets, and in minutes for Yeast
data set. BP-MLL and ML-kNN were not applied to Parkinson’s dis-
ease data set, and thus no computation times are available for
them on that data set. In addition, no computation times are avail-
able for OLS and CLAD for synthetic and Yeast data sets because
both OLS and CLAD were only applied to Parkinson’s disease data
set.

As shown in Table 7, MNL is the fastest on synthetic data set, ML-
kNN is the fastest on Yeast data set, while OLS is the fastest on Par-
kinson’s disease data set. MB-MBC is quite efficient and requires less
time than IndepMBs and IndepPC-BNs. IndepPC-BNs may take
more time since it builds a full Bayesian network for each class var-
iable whereas MB-MBC and IndepMBs only determine the Markov
blanket around each class variable; this is mainly noticed on Yeast
data set that contains a larger number of variables (14 class vari-
ables and 103 feature variables). CB-MBC takes always the longest
ndepMBs for the 5 classes EQ-5D.



Fig. 6. Graphical structure of the Bayesian network learnt by IndepPC-BNs for the mobility class variable.

Table 7
Computation times of the learning process of each method and each data set.

Method Synthetic (s) Yeast (min) Parkinson (s)

MB-MBC 0.57 ± 0.10 10.02 ± 1.99 13.38 ± 0.72
CB-MBC 44.35 ± 9.11 2370.69 ± 69.93 757.51 ± 47.91
IndepMBs 0.60 ± 0.08 17.00 ± 3.57 34.98 ± 1.57
IndepPC-BNs 0.67 ± 0.06 119.72 ± 17.68 23.40 ± 0.38
BP-MLL 2562.06 ± 171.61 69.61 ± 1.57
ML-kNN 3.20 ± 0.09 0.10 ± 0.01
MNL 0.54 ± 0.04 1.07 ± 0.30 10.56 ± 4.06
OLS 0.72 ± 0.08
CLAD 0.75 ± 0.21
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computation time compared to the other Bayesian network-based
methods since it is based on a wrapper approach. BP-MLL con-
sumes more computation times than MB-MBC, IndepMBs, MNL,
and ML-kNN on both synthetic and Yeast data sets, and this is
mainly due to its complex error function which needs to be opti-
mized through an iterative learning process [26]. Generally speak-
ing, ML-kNN, regression and filter approaches require less
computation time, whereas the wrapper approach always requires
more computation time.
5. Conclusion

We proposed MB-MBC, a new approach for learning multi-
dimensional Bayesian network classifiers from data. Our approach
is general and can be applied to any multi-dimensional classifica-
tion problem where an instance has to be assigned to more than
one class variable. In this study, we presented its application to
the problem of predicting the European Quality of Life-5 Dimen-
sions EQ-5D from the PDQ-39 items. Experimental results on syn-
thetic and Yeast data sets, as well as a real-world Parkinson’s
disease data set were encouraging in terms of the predictive per-
formance and the identification of dependence relationships
among class and feature variables, compared with state-of-the-
art approaches.

In the future, we intend to carry out a more extensive experi-
mental study using additional synthetic and real data sets. More-
over, it will be interesting to extend MB-MBC to deal with the
challenging task of multi-dimensional classification for evolving
data streams. This may require the development of an appropriate
method to detect the changes in the stream, then extending
MB-MBC to ensure a local updating of the current MBC over time,
without a need to relearn it from scratch.
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