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Regularized logistic regression is a useful classification method for problems with few samples and a
huge number of variables. This regression needs to determine the regularization term, which amounts
to searching for the optimal penalty parameter and the norm of the regression coefficient vector. This
paper presents a new regularized logistic regression method based on the evolution of the regression
coefficients using estimation of distribution algorithms. The main novelty is that it avoids the determi-
nation of the regularization term. The chosen simulation method of new coefficients at each step of
the evolutionary process guarantees their shrinkage as an intrinsic regularization. Experimental results
comparing the behavior of the proposed method with Lasso and ridge logistic regression in three cancer
classification problems with microarray data are shown.
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1. Introduction

Logistic regression (Hosmer & Lemeshow, 2000) is a simple and
efficient supervised classification method that provides explicit
probabilities of class membership and an easy interpretation of
the regression coefficients of predictor variables. The class variable
is binary while the explanatory variables are of any type, not even
requiring strong assumptions, like gaussianity of the predictor
variables given the class or assumptions about the correlation
structure. This lends great flexibility to this approach having
shown a very good performance in a variety of fields (Baumgartner
et al., 2004; Kiang, 2003).

Many of the most challenging current classification problems
involve extremely high dimensionality k (thousands of variables)
and small sample sizes N (less than one hundred cases). This is
the so-called ‘‘large k, small N” problem, since it hinders proper
parameter estimation when trying to build a classification model.
Microarray data classification falls into this category.

In logistic regression we identify four problems in the ‘‘large k,
small N” case. First, a large number of parameters – regression
coefficients – have to be estimated using a very small number of
samples. Therefore, an infinite number of solutions is possible as
the problem is undetermined. Second, multicollinearity is largely
present. As the dimensionality of the model increases, the chance
ll rights reserved.
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grows that a variable can be constructed as a linear combination
of other predictor variables, thereby supplying no new informa-
tion. Third, over-fitting may occur, i.e. the model may fit the train-
ing data well but perform badly on new samples. These problems
yield unstable parameter estimates. Fourth, there are also compu-
tational problems due to the large number of predictor variables.
Traditional algorithms for finding the estimates numerically, like
Newton–Raphson’s method (Thisted, 1988), require prohibitive
computations to invert a huge, sometimes singular matrix, at each
iteration.

Within the context of logistic regression, the ‘‘large k, small N”
problem has been tackled from three fronts: dimensionality reduc-
tion, feature (or variable) selection and regularization, or some-
times a combination of them.

As regards dimensionality reduction, principal components anal-
ysis is one of the most widespread methods (Aguilera, Escabias, &
Valderrama, 2006). This preprocessing of high-dimensional vari-
ables outputs transformed variables, of which only a reduced set
is used. These transformed variables are the classifier inputs. The
main drawback is that principal components tend to need all the
original variables in their expressions. As a result, the information
requirements of model application are not reduced and there is
also a loss of interpretability of the variables. Furthermore, there
is not guarantee of class separability coinciding with the selected
principal components (Weber, Vinterbo, & Ohno-Machado, 2004).
Other methods, such as partial least squares (Antoniadis,
Lambert-Lacroix, & Leblanc, 2003) or an adaptive dimension reduc-
tion through regression (Nguyen & Rocke, 2002) have also been
used.
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Feature selection methods yield parsimonious models which re-
duce information costs, are easier to explain and understand, and
increase model applicability and robustness. The selected features
are good for discriminating between the different classes and may
be sought via different heuristic search approaches (Liu & Motoda,
2008). The goodness of a proposed feature subset may be assessed
via an initial screening process using a scoring metric. The metric is
based on intrinsic characteristics of the data computed from
simple statistics on the empirical distribution, totally ignoring
the effects of the selected features on classifier performance. This
is the so-called filter approach to feature selection in machine
learning, or screening in statistics (West et al., 2001). By contrast,
the wrapper approach searches good subsets using the classifier it-
self as part of their function evaluation (Kohavi & John, 1997). A
performance estimate of the classifier trained with each subset as-
sesses the merit of this subset. Some recent studies combine filter
and wrapper approaches (Uncu & Türksen, 2007). In the context of
logistic regression and k ? N, Lee, Lee, Park, and Song (2005) pro-
pose different filter metrics to select a fixed number of features, the
top-ranked ones, such that they are always fewer than the sample
size.Avoiding the curse of dimensionality in a similar way, Weber
et al. (2004) perform a preliminary feature selection by choosing
the N � 1 variables maximally correlated with the class variable.
In a second phase, a logistic regression model is constructed with
the selected features, and it is further simplified via a backwards
variable selection.

The third front to tackle the ‘‘large k, small N” problem is using
regularization methods. These methods impose a penalty on the
size of logistic regression coefficients, trying to shrink them
towards zero. Therefore, regularized estimators are restricted max-
imum likelihood estimators (MLE), since they maximize the likeli-
hood function subject to restrictions on the logistic regression
parameters. The little bias allowed provides more stable estimates
with smaller variance. Regularization methods are more continu-
ous than usual discrete processes of retaining-or-discarding fea-
tures thereby not suffering as much from high variability (Hastie,
Tibshirani, & Friedman, 2001). This shrinkage of coefficients was
initially introduced in the ordinary linear regression scenario by
Hoerl and Kennard (1970), where restrictions were spherical. This
is the so-called ridge or quadratic (penalized) regression. Lee and
Silvapulle (1988), LeCessie and vanHouwelingen (1992) extended
the framework to logistic regression. Ridge estimators are expected
to be on average closer to the real value of the parameters than the
ordinary unrestricted MLEs, i.e. with smaller mean-squared error.
See Fan and Li (2006), Bickel and Li (2006) for recent developments
and a unified conceptual framework of the regularization theory.

Here we introduce estimation of distribution algorithms (EDAs) as
intrinsic regularizers within the logistic regression context. EDAs
are optimization heuristics included in the class of stochastic pop-
ulation-based search methods (Larrañaga & Lozano, 2002; Lozano,
Larrañaga, Inza, & Bengoetxea, 2006; Pelikan, 2005). EDAs work by
constructing an explicit probability model from a set of selected
solutions, which is then conveniently used to generate new prom-
ising solutions in the next iteration of the evolutionary process. In
our proposal, an EDA obtains the regularized estimates in a direct
way in the sense that the objective function to be optimized is still
the likelihood, not including any regularization term. It is a specif-
ically chosen simulation process during the evolution which
accounts intrinsically for the regularization. EDAs receive the unre-
stricted likelihood equations as inputs and generate the restricted
MLEs as outputs.

The paper is organized as follows. Section 2 reviews both the
classical and regularized versions of the logistic regression model.
Section 3 describes EDAs and how we propose to use them to solve
the regularized case. Experimental studies on several microarray
data sets, a great exponent of the ‘‘large k, small N” problem, are
presented in Section 4. Finally, Section 5 includes some conclusions
and future work.

2. Regularized logistic regression

2.1. The need for regularizing logistic regression

Assume we have a (training) data set DN of N independent sam-
ples from some experiment. DN ¼ fðcj; xj1; . . . ; xjkÞ; j ¼ 1; . . . ;Ng,
where xj ¼ ðxj1; . . . ; xjkÞt 2 Rk is the value of the jth sample, xji indi-
cates the ith variable outcome of the jth sample and cj is the known
class label of the jth sample, 0 or 1, for the binary case considered
in this paper.

Logistic regression uses the x values to determine the probabil-
ity p of a sample belonging to one of the two classes. Thus, we have
k + 1 variables: the class or response dichotomous variable C and
its predictor variables or covariates X1, . . ., Xk. The logistic model
should be able to classify any new sample that comes along, char-
acterized by just its covariate values.

Let pj denote P(C = 1jxj), j = 1, . . ., N. Then the logistic regression
model is defined as

log
pj

1� pj
¼ b0 þ

Xk

i¼1

bixji ¼ gj () pj ¼
1

1þ e�gj
ð1Þ

where b = (b0,b1, . . . ,bk)t denotes the vector of regression coeffi-
cients including a constant or intercept b0. These are usually esti-
mated from data by the maximum likelihood estimation method.
From DN , the log-likelihood function is built as

lðbÞ ¼
XN

j¼1

ðcj logpj þ ð1� cjÞ logð1� pjÞÞ; ð2Þ

where pj is given by expression (1). Maximum likelihood estima-
tors, bbi, are obtained by maximizing l with respect to b. Let c denote
the vector of response values cj (j = 1, . . . ,N), p be the vector of pj

values, X be an N � k matrix with each row given by xt
j , and u an

N-vector of ones. Thus, the following system of k + 1 equations
and k + 1 unknowns – called the likelihood equations – has to be
solved:

@l
@b
¼ Ztðc� pÞ ¼ 0;

where Z is the matrix [ujX].
Newton–Raphson’s algorithm is traditionally used to solve the

resulting nonlinear equations for bbi numerically. Each iteration pro-
vides an updating formula given by

b̂new ¼ b̂old þ ðZtWoldZÞ�1Ztðc� p̂oldÞ;

where b̂ ¼ ðb̂0; b̂1; . . . ; b̂kÞt , and p̂ denotes the vector of estimated
values at that iteration, i.e. its jth-component is

p̂old
j ¼ 1þ e�ðb̂

old
0 þb̂old

1 xj1þ���þb̂old
kx

xjkÞ
h i�1

; j ¼ 1; . . . ;N

and Wold denotes a diagonal matrix with elements p̂old
j 1� p̂old

j

� �
.

In the context of data involving high dimensionality (k) and
small sample sizes (N), the logistic regression approach has a num-
ber of problems, explained in the introduction section: undeter-
mined problem to be solved, multicollinearity, over-fitting and
computational difficulties. Regularization emerges as one of the
most promising solutions for these problems. In this section we
review the state-of-the-art in the case of regularized logistic
regression.

Regularized logistic regression maximizes the penalized log-
likelihood given by
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lðbÞ � k
2

JðbÞ; ð3Þ

where the penalty function is generally JðbÞ ¼
P

iciwðbiÞ; ci > 0. Typ-
ical choices are w(bi) = jbijq, q > 0, and ci = c, "i, giving rise to

lqðbÞ ¼ lðbÞ � k
2

Xk

i¼1

jbij
q
: ð4Þ

k > 0 is the penalty or regularization parameter and controls the
amount of shrinkage. The larger the k, the stronger its influence is
and the smaller the bi sizes become. When k = 0 the solution is
the ordinary MLE, whereas if k ?1, the bi all tend to 0. k is usually
chosen by cross-validation. The cross-validated deviance, error, BIC
or AIC are used as the criteria to be optimized.

2.2. Ridge logistic regression

The quadratically-regularized approach (i.e. q = 2), called ridge
logistic regression, seeks MLEs subject to spherical restrictions on
the parameters. Thus, the function to be maximized is

l2ðbÞ ¼ lðbÞ � k
2

Xk

i¼1

b2
i : ð5Þ

The maximizer of l2(b) in expression (5) always exists and is unique.
The objective function is smooth and concave, and as in the classical
logistic regression, can be maximized by standard methods such as
gradient descent, steepest descent, Newton, quasi-Newton, trun-
cated Newton or conjugate-gradient.

From a Bayesian point of view, the ridge estimate is the
posterior mode for a prior that is a flat prior for b0 and independent
distributions N(0,s2), where s2 = 1/k, for bi (Hastie et al., 2001).
Markov chain Monte Carlo techniques can be used, although the
computational burden is very costly. The benefit is a better han-
dling of model uncertainties.

In the field of microarray classification which is the most repre-
sentative example of ‘‘the large k, small N” problem, literature on
ridge logistic regression dates back to 2001 (Eilers, Boer, van
Ommen, & van Houwelingen, 2001). However, even though New-
ton–Raphson’s method simplifies the equations for obtaining the
estimators in the same way as in classical logistic regression, we
still have a computationally prohibitive problem in our ‘‘large k,
small N” context: there are thousands of equations (in fact
(k + 1)) to be solved, and the final equation given in Newton–Raph-
son’s formulas requires a matrix of the same dimension to be in-
verted. Storing this information demands substantial memory
space. Inverting huge matrices may be avoided to some extent
with sophisticated algorithms, like the dual algorithm based on
sequential minimal optimization (SMO) used in support vector ma-
chines and adapted in Keerthi, Duan, Shevade, and Poo (2005) to
penalized logistic regression.

On the other hand, dimensionality reduction and feature selec-
tion techniques are again the solutions we find to avoid managing
variables that are not discriminative between the classes and that
degrade classifier performance. Thus, in the specific literature on
DNA microarrays, (Shen & Tan, 2005) combine ridge logistic
regression with partial least squares and with singular value
decomposition (SVD), both of which are dimension-reduction
methods. See Eilers et al. (2001), Hastie and Tibshirani (2004) for
further details on efficient quadratic regularization for microarray
data by using SVD. In addition, they use a feature selection method
called recursive feature elimination (Guyon, Weston, Barnhill, &
Vapnik, 2002) that iteratively removes genes with smaller absolute
values of the ridge estimators. Similar ideas are explained in other
works (Fort & Lambert-Lacroix, 2005; Nguyen & Rocke, 2002). In
Zhu and Hastie (2004), in spite of reducing the matrix inversions
required in the ridge logistic regression by using the SMO algo-
rithm, generalized here to the multi-class case, the authors also ap-
ply several gene selection methods, including both filter and
wrapper approaches. Estimating the classifier performance while
ignoring the gene selection step can lead to severe downward bias.
Liao and Chin (2007) propose a parametric bootstrap model for
more accurate estimation of the performance.

2.3. Lasso logistic regression

When q is equal to 1 in lq(b) (see expression (4)) it results in Las-
so (Least Absolute Shrinkage and Selection Operator), introduced
by Tibshirani (1996) in the context of ordinary linear regression
and later extended to logistic regression (Genkin, Lewis, &
Madigan, 2007; Lokhorst, 1999; Shevade & Keerthi, 2003). The
function to be maximized is

l1ðbÞ ¼ lðbÞ � k
2

Xk

i¼1

jbij; ð6Þ

Interest in Lasso is growing because its penalty encourages the esti-
mators be either significantly large or exactly zero, which has the
effect of automatically performing feature selection and hence
yielding concise models.

In a Bayesian setting, the prior corresponding to this case is an
independent Laplace distribution (or double exponential) for each
bi. Cawley and Talbot (2006) even model the penalty parameter k
by using a Jeffrey’s prior to eliminate this parameter by integrating
it out analytically.

Ng (2004) presents a theoretical result related to the sample
complexity in the sense that the number of training examples re-
quired to learn ‘‘well” grows only logarithmically in the number
of irrelevant features. Although the objective function is still con-
cave in Lasso (as in ridge regression), an added computational
problem is that this function is not differentiable. Generic methods
for nondifferentiable concave problems, such as the ellipsoid
method or subgradient methods, are usually very slow in practice.
Faster methods have recently been investigated: interior point
methods (Koh, Kim, & Boyd, 2007) and quadratic approximations
to the likelihood function (Balakrishnan & Madigan, 2008; Lee,
Lee, Abbeel, & Ng, 2006; Sha, Park, & Saul, 2007).

Besides the aforementioned cross-validated criteria for choos-
ing k, during the last years its determination has been carried out
by using the regularization path that allows estimating b coeffi-
cients at the values of k at which the (active) set of non-zero coef-
ficients changes (Park & Hastie, 2006; Zhao & Yu, 2007).

Recent works propose variants of Lasso. Meier, van de Geer, and
Bühlmann (2008) extend the group Lasso introduced by Yuan and
Lin (2006) in the ordinary linear regression to logistic regression.
Group Lasso is able to do variable selection on (predefined) groups
of variables. The fused Lasso (Tibshirani, Saunders, Rosset, Zhu, &
Knight, 2005) penalizes the b coefficients and their successive
differences obtaining sparsity of both types of coefficients. The
features are ordered in such a way as to make successive differ-
ences meaningful. Finally, the adaptive Lasso (Zou, 2006) uses
adaptive weights for penalizing the coefficients differently.

2.4. Other regularizations

Bridge regression (Frank & Friedman, 1993) is the case with
q > 1 in w(bi) = jbijq. Fu (1998) compares the bridge and Lasso in
detail. With q < 1, the coefficients are more constrained than in
Lasso leading to more sparse solutions. However, this formulation
poses problems of nonconcavity and nondifferentiability and there
is a lack of efficient computational methods (Liu et al., 2007).
Recent works even advocate double penalizations: Lasso and ridge,
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also called the elastic net penalty (Zhou & Hastie, 2005), or Firth’s
(Firth, 1993) and ridge (Gao & Shen, 2007).

Several authors find in DNA microarray classification an impor-
tant field to apply regularized logistic regression. We have already
mentioned some examples for ridge logistic regression in Section
2.2. Other regularizations also arise for microarrays: (Cawley &
Talbot, 2006) is an example using Lasso and (Liu et al., 2007) is de-
voted to q < 1.
1 http://bioinformatics.upmc.edu/Help/UPITTGED.html.
3. EDAs for regularizing logistic regression

Among the stochastic population-based search methods, EDAs
(Larrañaga & Lozano, 2002; Lozano et al., 2006; Pelikan, 2005) have
recently emerged as a general framework that overcomes some
weaknesses of other well-known methods like genetic algorithms.
Unlike genetic algorithms, EDAs avoid the ad hoc design of cross-
over and mutation operators, as well as the tuning of a large num-
ber of parameters, while they explicitly capture the relationships
among the problem variables by means of a joint probability distri-
bution (jpd). The main system underlying the EDA approach is:

(1) D0 Generate M individuals randomly. Evaluate them with
a fitness function

(2) h = 1
(3) do {
(4) DSe

h�1  Select M0 < M individuals from Dh�1

(5) phðzÞ ¼ p z DSe
h�1

���� �
 Estimate the jpd from the selected

individuals
(6) Dh Sample M individuals (the new population) from

ph(z) and evaluate them
(7) } until a stopping criterion is met

M individuals, each representing a point of the search space,
constitute the initial population and are generated at random. All
of them are evaluated by means of a fitness function (step 1). Then,
M0 (M0 < M) individuals are selected according to a selection
method, taking the fitness function into account (step 4). Next, a
multidimensional probabilistic model that reflects the interdepen-
dencies between the encoded variables in these M0 selected indi-
viduals is induced (step 5). The estimation of this underlying
joint distribution represents the EDA bottleneck, as different de-
grees of complexity in the dependencies can be considered. In
the next step, M new individuals – the new population – are ob-
tained by sampling from the multidimensional probabilistic model
learnt in the previous step (step 6). These steps, 4 to 6, are repeated
until some pre-defined stopping condition is met (step 7).

If we confine ourselves to logistic regression classifiers, we find
that other evolutionary algorithms like genetic algorithms have
been used only for performing feature selection (Nakamichi, Imoto,
& Miyano, 2004; Vinterbo & Ohno-Machado, 1999), but not for
estimating the parameters.

As described above, regularized logistic regression may solve
the problems encountered in ‘‘the large k, small N” context. The
usual unrestricted MLEs are substituted by restricted MLEs that
maximize a penalized likelihood. EDAs could be successfully used
to optimize any kind of penalized likelihood, like the one in expres-
sion (3), because, unlike traditional numerical methods, they do
not require derivative information or matrix inversions. EDAs
would use expression (3) as the fitness function to guide the search
while learning and simulating the distribution of the selected solu-
tions. In this sense, EDAs would turn out to be a strong competitor
of numerical methods.

Leaving aside this direct procedure, we investigate here a more
interesting approach that shows that EDAs can act as an intrinsic
regularizer if we choose a suitable representation. Thus, let us take
l(b) in expression (2) as the fitness function that assesses each pos-
sible solution b to the (unrestricted) maximum likelihood problem.
b is a k + 1 dimensional continuous random variable. EDAs would
start by randomly generating the initial population D0 of M individ-
uals b

ð0Þ
1 ; . . . ; b

ð0Þ
M . After selecting M0 individuals (e.g. the top M0), the

core of the EDA paradigm is step 5 above to estimate the jpd from
these selected M0 individuals. Without losing generality, we start
from a univariate marginal distribution algorithm UMDAG

c

� �
(Larrañaga, Etxeberria, Lozano, & Peña, 2000) in our continuous
b-domain. See González, Lozano, and Larrañaga (2002) for its the-
oretical support as an evolutionary algorithm to solve continuous
optimization problems. UMDAG

c assumes that at each generation
h, all variables are independent and normally distributed, i.e.

phðbÞ ¼
Yk

i¼0

phðbiÞ ¼
Yk

i¼0

1
rih

ffiffiffiffiffiffiffi
2p
p e�

1
2ð

bi�lih
rih
Þ2
: ð7Þ

We now modify UMDAG�
c to tackle the regularized logistic regres-

sion by shrinking the bi parameters during the EDA simulation step.
The new algorithm is called UMDAG�

c . Specifically, at step 5 UMDAG�
c

learns, at each iteration h, a model given by expression (7). This in-
volves estimating the new lih and rih with the MLEs computed on
the selected set DSe

h�1 of M0 individuals from the previous generation.
However, sampling at step 6 now generates individuals from (7)
with the normal distributions ph(bi) constrained to lie in an interval
[�bh,bh]. This is readily achieved by generating values from a Gauss-
ian of parameters lih and rih for each variable bi and constraining its
outputs, according to a standard rejection method – or via a trans-
formation of that Gaussian – to fall within [�bh,bh].

The idea is that, as long as the algorithm progresses, forcing the
bi parameters to be in a bounded interval around 0 constrains and
stabilizes their values, just like regularization does. At step 5, we
learn, for the random variable b, the multivariate Gaussian distri-
bution with a diagonal covariance matrix that best fits, in terms
of likelihood, the M0 b-points that are top ranked in the objective
function l(b). We then generate, at step 6, M new points from the
previous distribution truncated at each coordinate at �bh (bottom)
and at bh (top). New solutions are ranked with respect to their l(b)
values, and the best M0 are chosen and so on. In spite of optimizing
function l(b) rather than another penalized log-likelihood function
like l1(b) (in expression (6)) or l2(b) (in expression (5)), the evolu-
tionary process guarantees that the bi values belong to intervals
of the desired size. Therefore, our estimates of bi are regularized
estimates. Moreover, since we use the original l(b) objective func-
tion of the logistic regression, we do not need to specify the k
parameter of other penalized approaches like in expression (5).

Note that plenty of probability models are possible in expres-
sion (7), without necessarily assuming all variables to be Gaussian
and independent. Different univariate, bivariate or multivariate
dependencies may be designed with the benefit of having an expli-
cit model of (possible) complex probabilistic relationships among
the different parameters.

Finally, the last step, say at iteration h = T, would contain
b
ðTÞ
1 ; . . . ; b

ðTÞ
M from which argmaxj2f1;...;Mglðb

ðTÞ
j Þ would be chosen as

the final regularized estimate of b.

4. Results

We illustrate how our approach really acts as a regularizer on
three publicly available1 benchmark microarray data sets. First,
the Breast data set (West et al., 2001) with 7129 genes and 49
tumor samples, 25 of them representing estrogen receptor-positive
(ER+) and the other 24 being estrogen receptor-negative (ER-).
Second, the Colon data set (Alon et al., 1999) that contains 2000

http://bioinformatics.upmc.edu/Help/UPITTGED.html


Table 1
Results of UMDAG�

c vs. other logistic regressions for Breast with the BSS/WSS
criterion. and symbols are used for the comparisons UMDAG�

c vs. RIDGE and
UMDAG�

c vs. LASSO, respectively. . means that RIDGE or LASSO is statistically superior to
UMDAG�

c (p-value < 0.05).

#
genes

UMDAG�
c

RIDGE LASSO

Accur. AUC Accur. AUC Accur. AUC

1 0.8613 0.9426 0.8643 0.9405 0.8593 0.9416
2 0.8421 0.9266 0.8557 . 0.9310 . 0.8517 . 0.9235
3 0.9077 0.9577 0.9128 . 0.9545 0.8560 0.9390
4 0.9062 0.9600 0.9208 . 0.9557 0.8605 0.9396
5 0.8921 0.9504 0.9104 . 0.9442 0.8587 0.9328
6 0.9167 0.9743 0.9334 . 0.9678 0.8605 0.9398
7 0.9103 0.9727 0.9292 . 0.9665 0.8614 0.9395
8 0.9249 0.9818 0.9410 . 0.9771 0.8604 0.9421
9 0.9179 0.9794 0.9357 . 0.9753 0.8597 0.9430
10 0.9213 0.9850 0.9375 . 0.9747 0.8698 0.9400
11 0.9307 0.9889 0.9422 . 0.9787 0.8712 0.9422
12 0.9224 0.9862 0.9348 . 0.9768 0.8749 0.9427
13 0.9245 0.9844 0.9348 . 0.9760 0.8729 0.9406
14 0.9224 0.9861 0.9333 . 0.9753 0.8711 0.9393
15 0.9257 0.9875 0.9310 . 0.9734 0.8719 0.9402
16 0.9258 0.9869 0.9289 . 0.9729 0.8715 0.9389
17 0.9207 0.9836 0.9267 . 0.9693 0.8715 0.9386
18 0.9156 0.9819 0.9252 . 0.9692 0.8679 0.9378
19 0.9165 0.9802 0.9236 . 0.9649 0.8684 0.9368
20 0.9287 0.9835 0.9334 . 0.9729 0.8675 0.9382
21 0.9309 0.9855 0.9362 . 0.9768 0.8668 0.9366
22 0.9327 0.9850 0.9378 . 0.9780 0.8660 0.9360
23 0.9371 0.9856 0.9413 . 0.9780 0.8643 0.9369
24 0.9355 0.9847 0.9408 . 0.9779 0.8636 0.9356
25 0.9333 0.9847 0.9380 . 0.9768 0.8645 0.9356
26 0.9340 0.9843 0.8631 0.9355
27 0.9337 0.9839 0.8621 0.9346
28 0.9329 0.9834 0.8648 0.9351
29 0.9325 0.9833 0.8606 0.9320
30 0.9345 0.9839 0.8619 0.9344
31 0.9326 0.9820 0.8630 0.9343
32 0.9305 0.9811 0.8613 0.9329
33 0.9310 0.9810 0.8631 0.9320
34 0.9315 0.9813 0.8597 0.9326
35 0.9301 0.9807 0.8606 0.9342
36 0.9377 0.9828 0.8593 0.9341
37 0.9363 0.9822 0.8607 0.9328
38 0.9360 0.9817 0.8585 0.9315
39 0.9379 0.9837 0.8585 0.9330
40 0.9416 0.9865 0.8558 0.9309
41 0.9422 0.9862 0.8583 0.9310
42 0.9400 0.9850 0.8583 0.9311
43 0.9395 0.9857 0.8566 0.9291
44 0.9382 0.9847 0.8562 0.9300
45 0.9396 0.9851 0.8593 0.9315
46 0.9386 0.9844 0.8564 0.9311
47 0.9408 0.9847 0.8542 0.9286
48 0.9384 0.9842 0.8562 0.9299
49 0.9489 0.9894 0.8538 0.9291
50 0.9502 0.9889 0.8545 0.9297
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genes for 62 tissue samples: 40 cancer tissues and 22 normal tissues.
Third, the Leukemia data set (Golub et al., 1999) that consists of
7129 genes and 72 tissue samples: 25 cases of acute myeloid leuke-
mia (AML) and 47 cases of acute lymphoblastic leukemia (ALL).

For our proposal based on EDAs we have developed our own
implementation in C++. The parameters used to run UMDAG�

c were:
an initial population of M = 400 individuals, M0 = 200 selected
individuals for learning and bh = 10. The change in the mean fitness
value between successive generations, i.e. in the mean value of the
objective function l(b), was the chosen criterion for assessing the
convergence of the algorithms. The algorithm stops whenever this
change is small enough so as not to detect improvement. Due to
the stochastic nature of EDAs, each experiment is run ten times.

We compare our EDA with the most usual regularized versions,
ridge and Lasso logistic regressions. The R environment (Ihaka &
Gentleman, 1996) provides tested functions to obtain the
estimates of b coefficients and of some classifier performance mea-
sures of interest. For ridge logistic regression, we use the lrm () R
function from the Design package. For Lasso, we use the gl1ce

function from the lasso2 package. Using these functions we have
adopted a simple scheme of searching the best k along a grid of val-
ues with the error as the cross-validated criterion.

The classification accuracy or percentage of correctly classified
observations is a typical performance measure to be maximized.
However, this is not always a suitable metric specially when dealing
with two-class problems with skewed classes and misclassification
cost distributions. In this case, an effective and preferable criterion
is the area under the receiver operating characteristic curve (AUC)
(Hanley & McNeil, 1982). The AUC has a powerful interpretation
and it is related to other well-known statistics making it easier to
learn its statistical properties. The AUC ranges from 0 to 1, where
perfect discrimination between both classes corresponds to an area
of 1 (a horizontal line through the point (1,1)) and random classifi-
cation corresponds to an area of 0.5 (the identity line).

Demšar (2006) finds astounding that classification accuracy is
usually still the only measure used, despite the medical and
machine learning communities urge us to use other measures like
AUC. Cortes and Mohri (2004), Huang and Ling (2005) studied in
detail the relationship between classification accuracy and AUC
and concluded that, although both measures reveal separate char-
acteristics of a classifier, the AUC is statistically consistent and a
more discriminating measure than classification accuracy. More-
over, the AUC is also a suitable measure to assess the classifier abil-
ity to rank instances in two-class classification problems. In
particular, the AUC is the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly cho-
sen negative instance. A review of different ways to estimate the
AUC, both parametric and non-parametric, may be found in Lasko,
Bhagwat, Zou, and Ohno-Machado (2005). Therefore, in this paper
we will record both measures, accuracy and AUC. We use the
somers2() R function included in the Hmisc package to estimate
the AUC by means of the c-index.

Thus, our aim is to compare our EDA-based algorithm, UMDAG�
c ,

as an intrinsic regularizer, against other well-known regularized
logistic regressions: RIDGE and Lasso. Starting from the same fixed
set of genes, each of the three algorithms – UMDAG�

c , RIDGE and LASSO

– constructs the logistic classifier by estimating the parameters
according to its own methodology. The benefit of combining a reg-
ularization with a dimension-reduction step to enhance classifier
efficiency has been pointed out elsewhere (Fort & Lambert-Lacroix,
2005). This preliminary selection of genes is based on different fil-
ter metrics usually found in the literature. We have used four filter
criteria: (1) the BSS/WSS criterion, which maximizes the ratio of
between-class to within-class sums of squares (as in Dudoit,
Fridlyand, & Speed (2002)), (2) a ranking of genes according to
their Pearson correlation coefficient to the class variable (as in
Weber et al. (2004), West et al. (2001)), (3) a p-metric that looks
for genes with maximum difference between the two within-class
mean expression levels (as in Inza, Larrañaga, Blanco, & Cerrolaza
(2004)), and (4) a t-score based on a statistical standard t-test.

The method for estimating the classifier’s performance mea-
sures should be carefully chosen. In our case, these measures are
classification accuracy and AUC. The holdout estimation method
is impractical with small samples. Cross-validation estimation pro-
vides unreliable estimates for small samples due to excessive var-
iance, which is problematic in microarray analysis. The behavior of
cross-validation for very small samples has been thoroughly stud-
ied in Braga-Neto and Dougherty (2004) who did not even find
substantial differences, in terms of decreased variance, among
the cross-validated variants (leave-one-out, 5- and 10-fold, strati-
fied and repeated cross-validation).A large variance is of particular



Table 2
Results of UMDAG�

c vs. other logistic regressions for Colon with the BSS/WSS criterion.
and symbols are used for the comparisons UMDAG*

c vs. RIDGE and UMDAG�
c vs.

LASSO, respectively. . means that RIDGE or LASSO is statistically superior to UMDAG�
c (p-

value < 0.05).

#
genes

UMDAG�
c

RIDGE LASSO

Accur. AUC Accur. AUC Accur. AUC

1 0.8423 0.8188 0.8487 0.8213 0.8016 0.8208
2 0.8233 0.8163 0.8255 0.8224 . 0.8142 0.8223 .

3 0.8204 0.8507 0.8277 . 0.8591 . 0.7965 0.8400
4 0.8151 0.8442 0.8205 . 0.8443 0.7956 0.8314
5 0.8348 0.8316 0.8470 . 0.8230 0.7927 0.8290
6 0.8406 0.8365 0.8624 . 0.8466 . 0.7907 0.8274
7 0.8521 0.8436 0.8629 . 0.8484 . 0.8014 0.8424
8 0.8449 0.8345 0.8634 . 0.8485 . 0.8006 0.8423 .

9 0.8409 0.8256 0.8520 . 0.8361 . 0.7993 0.8407 .

10 0.8589 0.9219 0.9097 . 0.9219 0.7883 0.8981
11 0.8663 0.9248 0.9155 . 0.9180 0.7864 0.8960
12 0.8678 0.9224 0.9123 . 0.9179 0.7842 0.8928
13 0.8625 0.9235 0.9059 . 0.9087 0.7848 0.8932
14 0.8853 0.9477 0.9126 . 0.9261 0.7817 0.8980
15 0.8899 0.9479 0.9158 . 0.9305 0.7833 0.8963
16 0.8859 0.9453 0.9115 . 0.9272 0.7839 0.8944
17 0.8985 0.9595 0.9167 . 0.9387 0.7845 0.8957
18 0.8967 0.9601 0.9154 . 0.9413 0.7844 0.8948
19 0.8939 0.9547 0.9123 . 0.9374 0.7846 0.8969
20 0.8921 0.9522 0.9080 . 0.9357 0.7841 0.8983
21 0.8869 0.9490 0.9031 . 0.9299 0.7841 0.8937
22 0.8870 0.9507 0.9050 . 0.9338 0.7828 0.8942
23 0.8853 0.9488 0.9023 . 0.9317 0.7828 0.8942
24 0.8871 0.9481 0.9017 . 0.9283 0.7842 0.8949
25 0.8855 0.9456 0.9010 . 0.9283 0.7832 0.8930
26 0.8826 0.9424 0.8983 . 0.9227 0.7831 0.8919
27 0.8832 0.9433 0.9025 . 0.9308 0.7824 0.8936
28 0.8808 0.9404 0.8990 . 0.9287 0.7836 0.8949
29 0.8779 0.9395 0.8980 . 0.9274 0.7806 0.8933
30 0.8738 0.9363 0.8942 . 0.9256 0.7829 0.8941
31 0.8785 0.9352 0.8955 . 0.9237 0.7816 0.8934
32 0.8744 0.9302 0.8924 . 0.9205 0.7821 0.8932
33 0.8830 0.9395 0.8996 . 0.9315 0.7821 0.8928
34 0.8807 0.9371 0.8994 . 0.9322 0.7809 0.8921
35 0.8790 0.9355 0.9015 . 0.9330 0.7797 0.8961
36 0.8798 0.9362 0.7808 0.8947
37 0.8800 0.9366 0.7795 0.8960
38 0.8776 0.9347 0.7779 0.8937
39 0.8763 0.9332 0.7795 0.8926
40 0.8781 0.9369 0.7794 0.8951
41 0.8794 0.9339 0.7785 0.8928
42 0.8767 0.9326 0.7789 0.8930
43 0.8807 0.9361 0.7774 0.8916
44 0.8778 0.9330 0.7794 0.8916
45 0.8795 0.9336 0.7781 0.8922
46 0.8821 0.9365 0.7782 0.8919
47 0.8805 0.9351 0.7793 0.8928
48 0.8779 0.9328 0.7804 0.8923
49 0.8798 0.9353 0.7770 0.8905
50 0.8795 0.9343 0.7797 0.8912

Table 3
Results of UMDAG�

c vs. other logistic regressions for Leukemia with the BSS/WSS
criterion. and symbols are used for the comparisons UMDAG�

c vs. RIDGE and
UMDAG�

c vs. LASSO, respectively. . means that RIDGE or LASSO is statistically superior to
UMDAG�

c (p-value < 0.05).

#
genes

UMDAG�
c

RIDGE LASSO

Accur. AUC Accur. AUC Accur. AUC

1 0.9326 0.9793 0.9362 . 0.9784 0.8550 0.9786
2 0.9228 0.9815 0.9246 . 0.9810 0.8631 0.9750
3 0.9445 0.9934 0.9559 . 0.9933 0.8518 0.9796
4 0.9441 0.9920 0.9578 . 0.9893 0.8525 0.9816
5 0.9378 0.9870 0.9494 . 0.9831 0.8504 0.9805
6 0.9342 0.9817 0.9481 . 0.9766 0.8580 0.9769
7 0.9370 0.9838 0.9544 . 0.9783 0.8547 0.9768
8 0.9325 0.9817 0.9548 . 0.9775 0.8536 0.9763
9 0.9382 0.9801 0.9553 . 0.9750 0.8529 0.9759
10 0.9383 0.9772 0.9546 . 0.9713 0.8529 0.9756
11 0.9455 0.9792 0.9587 . 0.9761 0.8496 0.9747
12 0.9459 0.9730 0.9553 . 0.9667 0.8488 0.9730
13 0.9423 0.9674 0.9537 . 0.9617 0.8467 0.9714 .

14 0.9450 0.9662 0.9541 . 0.9594 0.8459 0.9711 .

15 0.9444 0.9693 0.9577 . 0.9677 0.8469 0.9713
16 0.9448 0.9716 0.9556 . 0.9659 0.8459 0.9689
17 0.9465 0.9647 0.9551 . 0.9619 0.8445 0.9680 .

18 0.9441 0.9657 0.9562 . 0.9666 0.8456 0.9691 .

19 0.9489 0.9627 0.9568 . 0.9644 0.8436 0.9681 .

20 0.9506 0.9652 0.9617 . 0.9685 . 0.8354 0.9698 .

21 0.9579 0.9743 0.9649 . 0.9751 0.8356 0.9716
22 0.9557 0.9738 0.9663 . 0.9775 . 0.8347 0.9711
23 0.9576 0.9738 0.9663 . 0.9782 . 0.8368 0.9712
24 0.9611 0.9795 0.9700 . 0.9812 . 0.8352 0.9713
25 0.9626 0.9832 0.9716 . 0.9831 0.8367 0.9717
26 0.9630 0.9860 0.9729 . 0.9842 0.8363 0.9717
27 0.9631 0.9853 0.9730 . 0.9826 0.8361 0.9718
28 0.9627 0.9849 0.9728 . 0.9833 0.8356 0.9711
29 0.9623 0.9848 0.9717 . 0.9831 0.8358 0.9710
30 0.9609 0.9846 0.9714 . 0.9827 0.8349 0.9712
31 0.9618 0.9843 0.9707 . 0.9822 0.8360 0.9711
32 0.9626 0.9867 0.9719 . 0.9844 0.8358 0.9730
33 0.9622 0.9859 0.9725 . 0.9841 0.8337 0.9704
34 0.9676 0.9894 0.9795 . 0.9921 . 0.8313 0.9718
35 0.9665 0.9897 0.9781 . 0.9918 . 0.8325 0.9726
36 0.9725 0.9926 0.9842 . 0.9955 . 0.8320 0.9722
37 0.9713 0.9923 0.9837 . 0.9950 . 0.8313 0.9719
38 0.9702 0.9920 0.9831 . 0.9952 . 0.8322 0.9723
39 0.9698 0.9918 0.9814 . 0.9945 . 0.8322 0.9724
40 0.9703 0.9914 0.9824 . 0.9948 . 0.8328 0.9720
41 0.9712 0.9918 0.8324 0.9724
42 0.9713 0.9927 0.8326 0.9735
43 0.9711 0.9914 0.8314 0.9716
44 0.9725 0.9904 0.8323 0.9720
45 0.9761 0.9925 0.8319 0.9716
46 0.9770 0.9923 0.8326 0.9721
47 0.9778 0.9938 0.8326 0.9720
48 0.9753 0.9926 0.8316 0.9728
49 0.9757 0.9924 0.8306 0.9713
50 0.9756 0.9925 0.8298 0.9716

Table 4
Some statistical measures of the run times (in seconds).

min mean max

Breast UMDAG�
c

0.31 1.76 3.98

RIDGE 0.28 0.65 1.08
LASSO 0.27 0.45 0.68

Colon UMDAG�
c

0.91 8.45 14.69

RIDGE 0.27 0.78 1.20
LASSO 0.26 0.53 0.75

Leukemia UMDAG�
c

0.35 3.80 7.92

RIDGE 0.18 0.59 0.99
LASSO 0.18 0.39 0.67
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concern in our small sample case since the estimate can often be
far from the actual performance measure. Bootstrap estimation
procedures are smoothed versions of cross-validation to reduce
the variability of performance estimates. They come at the price
of a high computational cost and an increased bias. Braga-Neto
and Dougherty (2004) proved the .632 bootstrap estimator (Efron,
1983) to be a good overall estimator in small-sample microarray
classification, and it is therefore the chosen method in this paper.
Based on our experience, a good choice in the experiments for
the number B of bootstrap samples used for training is B = 500.
Note that for each bootstrap sample, the search for k must be car-
ried out, thereby increasing the computational burden.

Tables 1–3 summarize the experimental results of the mean
performance measures, accuracy and AUC, over the ten executions,
once a fixed number of genes {1,2,3, . . . ,50} has been selected and
scored by the four different filter procedures. Due to space limita-
tions, we only show the BSS/WSS filter per data set. The results and
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Fig. 1. Boxplots for each bi for Breast with 11 genes (left), Colon with 18 genes (center) and Leukemia with 3 genes (right), with UMDAG�
c (top), RIDGE (center) and LASSO

(bottom) algorithms.
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tables of the remaining filters are available on our web page.2 We
have to remark that the influence of the filters is not so sizeable.
The Mann–Whitney test was used to compute the statistical signif-
icance of the difference between a pair of algorithms: We tested
both whether UMDAG�

c exhibits a statistically significant better
behavior than the other algorithm and vice versa, i.e. whether
the other algorithm reveals a statistically significant better behav-
ior than UMDAG�

c . For comparing UMDAG�
c with RIDGE and LASSO, the

symbols used are and , respectively. The symbols mean that
UMDAG*

c reveals a statistically significant better behavior when
2 http://laurel.datsi.fi.upm.es/�vrobles/reg_eda.
compared to the other algorithm with respect to the performance
measure, accuracy or AUC, depending on the column, with a
p-value < 0.05. When RIDGE or LASSO is statistically superior to
UMDAG�

c , the symbol used is ., meaning that UMDAG�
c is beaten.

The conclusions are as follows. First, when compared to LASSO,
UMDAG�

c is statistically superior both on AUC and accuracy mea-
sures for all data sets (see symbols in columns 2 and 3). For some
isolated cases, LASSO is superior to UMDAG*

c: for Breast, with 2
genes on accuracy (see column 6 in Table 1); for Colon, with 2,
8 and 9 genes on AUC (see column 7 in Table 2); and for Leukemia,
with 13, 14 and 17 to 20 genes on AUC (see column 7 in Table 3).

Second, when compared to RIDGE, UMDAG�
c is statistically supe-

rior on the AUC measure for all data sets for almost any number

http://laurel.datsi.fi.upm.es/~vrobles/reg_eda
http://laurel.datsi.fi.upm.es/~vrobles/reg_eda
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of genes (see symbols in column 3 of the three tables). In some
isolated cases, the test provides statistically significant difference
in favor of RIDGE (see . symbols in column 5 of the three tables).
However, RIDGE is statistically superior to UMDAG�

c on the accuracy
measure (see . symbols in column 4).

Although not displayed in the tables (see our web page), as
expected, UMDAG�

c always exhibits a statistically significant
superiority both on AUC and on accuracy against the classical logis-
tic regression.

Note the blank results for RIDGE in the lower part of the tables.
The regression does not work with more than 25 genes for Breast,
35 for Colon and 40 for Leukemia. This number is related to the
average 0.632N of the original data points that are expected to
be obtained (not repeated) in the bootstrap sample of size N. Like-
wise LASSO, UMDAG�

c and EDAs in general, offer an attractive alterna-
tive as they do not have this limitation.

As far as computational burden is concerned, UMDAG�
c is costlier

than RIDGE and LASSO, the latter being the fastest algorithm. Table 4
shows a summary of the run times for the three methods. Despite
being slower, UMDAG*

c yields rather acceptable times, ranging
from less than 1 CPU second running on an Intel Xeon 2 GHz under
Linux to almost 4 s for Breast, almost 8 s for Leukemia and al-
most 15 s for Colon.

The rationale behind this behavior may be the following. LASSO

indeed works with fewer variables than the other methods because
it yields a sparser vector b, with relatively few nonzero coeffi-
cients.Thus, for example, when 20 genes are pre-selected, LASSO is
actually working with 11 genes for Breast (there are 9 zero coef-
ficients) and 6 genes for Colon and Leukemia (14 coefficients are
zero), see our web page. On the contrary, RIDGE and UMDAG�

c typi-
cally yield bs with all coefficients nonzero.

On the other hand, RIDGE and LASSO have to search a good k value
whereas UMDAG�

c does not. UMDAG*
c, however, explores and eval-

uates more possible solutions than the other algorithms and has
the additional steps of learning and simulation. With regard to
the objective function to be maximized, UMDAG�

c ’s is simpler than
RIDGE’s, which despite being differentiable has the penalty term,
and than LASSO’s, which in addition is non-differentiable.

By further analyzing the results of the Tables 1–3 we can sug-
gest a good model for UMDAG�

c . It would be desirable to have good
performance measures, accuracy and AUC, but also with a reason-
able number of genes. Thus, the model with 11 genes seems to be
the most suitable for Breast, with an accuracy of 0.9307 and AUC
equal to 0.9889; for Colon, it is the model with 18 genes with an
accuracy of 0.8967 and AUC equal to 0.9601; whereas for Leuke-
mia, only 3 genes make up a good choice, with an accuracy of
0.9445 and AUC equal to 0.9934.

Interestingly enough, we show how our method is a regularizer
since the bi estimates are indeed stable. Fig. 1 shows the boxplots
of the 10 � 500 bootstrap estimates of bi coefficients for the mod-
els marked above as suitable: for Breast with 11 genes, Colon
with 18 genes and Leukemia with 3 genes. Note that the Y-axis
scales are different depending on the algorithm and the data set.

UMDAG�
c behaves as expected from a good regularizer: bi’s var-

iability is low and there are only a few outliers in all the estimates.
Although exhibiting more outliers than UMDAG*

c, LASSO is indeed
the algorithm that shrinks the bi estimates the most. However,
RIDGE is the worst method in this regard. Note that the same pattern
of the boxes is always reproduced regardless of the algorithm.
5. Conclusion and future work

We have introduced a novel EDA-based approach that finds a
regularized logistic classifier. EDA is not influenced by situations
where the number of covariates is relatively large compared to
the number of observations. By including the shrinkage of the coef-
ficients intrinsically during its evolution process while optimizing
the usual likelihood function, our approach works like a regular-
ized logistic classifier. EDAs receive the unrestricted likelihood
equations as inputs and generate the restricted MLEs as outputs.

Our proposal yields significantly better performance on the rel-
evant AUC measure, as compared to ridge and Lasso logistic regres-
sions. The classification accuracy achieved outperforms that of
Lasso although it is worse than the accuracy obtained with ridge
logistic regression. Our evolutionary strategy takes longer to find
the coefficient estimates, ridge and Lasso logistic regressions being
faster. However, run times are still negligible. Finally, we have
shown our regularization to be effective on the stability of the
regression parameter estimates. Therefore, the intrinsic regularizer
presented here turns up as a good candidate in the regularized
logistic regression context.

Future directions to be explored are EDA approaches that take
into account more complex probabilistic conditional dependencies
among bi parameters, at the expense, perhaps, of a higher compu-
tational cost. Traditional numerical methods are unable to provide
this kind of information. The inclusion of interaction terms among
(possibly co-regulated) genes in gj of Eq. (1) would also be feasible.

Finally, unlike the traditional numerical procedures, the EDA ap-
proach could be used in a more direct way, as a method that is able
to optimize any objective function, regardless of its complexity or
the non-existence of an explicit formula for its expression. Thus,
EDA could find parameters that maximize any regularized logistic
regression (Lasso, bridge. . .) or even the AUC objective. The diffi-
culty in dealing with the AUC directly as the objective function is
pointed out in Ma and Huang (2005), who use an approximation
to it instead. Nevertheless, it is the original and intrinsic way of
shrinking the regression coefficients embedded in some EDA steps
which provides our valuable contribution in this paper.
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