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When learning Bayesian network based classifiers continuous variables are usually han-
dled by discretization, or assumed that they follow a Gaussian distribution. This work
introduces the kernel based Bayesian network paradigm for supervised classification. This
paradigm is a Bayesian network which estimates the true density of the continuous vari-
ables using kernels. Besides, tree-augmented naive Bayes, k-dependence Bayesian classifier
and complete graph classifier are adapted to the novel kernel based Bayesian network par-
adigm. Moreover, the strong consistency properties of the presented classifiers are proved
and an estimator of the mutual information based on kernels is presented. The classifiers
presented in this work can be seen as the natural extension of the flexible naive Bayes
classifier proposed by John and Langley [G.H. John, P. Langley, Estimating continuous
distributions in Bayesian classifiers, in: Proceedings of the 11th Conference on Uncertainty
in Artificial Intelligence, 1995, pp. 338–345], breaking with its strong independence
assumption.

Flexible tree-augmented naive Bayes seems to have superior behavior for supervised clas-
sification among the flexible classifiers. Besides, flexible classifiers presented have obtained
competitive errors compared with the state-of-the-art classifiers.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Supervised classification [6,26] is an outstanding task in data analysis and pattern recognition. It requires the
construction of a classifier, that is, a function that assigns a class label to instances described by a set of variables. There
are numerous classifier paradigms, among which Bayesian networks (BN) [60,65], based on probabilistic graphical models
(PGMs) [10,50], are well known and very effective in domains with uncertainty. A Bayesian network is a directed acyclic
graph of nodes representing variables, and arcs representing conditional independence relations between triplets of sets
of variables. This kind of PGM assumes that each random variable follows a conditional probability distribution given a spe-
cific value of its parent variables. BNs are used to encode a factorization of the joint distribution among the domain variables,
based on the conditional independencies represented by the directed graph structure. This fact, combined with the Bayes
rule, can be used for classification.

In order to induce a classifier from data, two types of variables are considered: the class variable or class C, and the rest of
the variables or predictors X ¼ ðX1; . . . ;Xd;Xdþ1; . . . ;Xd0 Þ. fX1; . . . ;Xdg is the set of continuous predictors and fXdþ1; . . . ;Xd0 g is
the set of discrete predictors. Assuming a symmetric loss function, the process of classifying an instance x consists of choos-
ing the class c� with the highest a posteriori probability, c� ¼ argc max pðcjxÞ. This entails the use of the winner-takes-all rule.
The a posteriori distribution can be obtained in the following way with the BNs:
. All rights reserved.
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Fig. 1. Different structure complexities of BN based classifiers.
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pðcjxÞ / qðc; xÞ ¼ pðcÞf ðxjcÞ ¼ pðcÞ
Yd

i¼1

f ðxijpaiÞ
Yd0

j¼dþ1

pðxjjpajÞ ð1Þ
where pai is an instantiation of the predictors pai, which is the set of parents of Xi in the graph, pð�Þ is a probability distri-
bution, f ð�Þ is a density function and qð�Þ a generalized probability function [17]. This kind of classifier is known as generative,
and it forms the most common approach in the BN literature for classification [11,25,30,47,48,56,64,73]. Generative classi-
fiers use the joint probability function of the predictor variables and the class, qðc; xÞ. They classify a new instance by using
the Bayes rule in order to compute the posterior probability, pðcjxÞ of the class variable given the values of the predictors (see
Eq. (1)). On the other hand, discriminative classifiers [35,40,70,74] directly model the posterior probability of the class con-
ditioned on the predictor variables pðcjxÞ. This work presents a set of generative classifiers based on a new family of BNs that
we call kernel based Bayesian network.

It has to be highlighted that this work is centered on the difficulties of modeling continuous variables directly (without
discretization), and their relations in BN paradigm. The modeling of the mixed domains in BNs can be done as follows: to
learn a density function conditioned on a discrete variable is equivalent to creating the partitions in the database inducted
by the different values of the discrete variable, and then learn the density functions associated with each value of the discrete
variable uniquely from the cases of its corresponding partition. In order to improve the readability and simplicity of the pa-
per, from here on, we deal with continuous domains only (without discrete predictors).

One of the simplest classifiers based on BNs is the naive Bayes (NB) [25,48,56]. NB assumes that the predictors are con-
ditionally independent given the class. Fig. 1a represents an NB structure. In spite of this strong assumption, its performance
is surprisingly good, even in databases which do not hold with the independence assumption [23].

The good performance of the NB classifier has motivated the investigation of classifiers based on BNs which relax this
strong independence assumption. A set of examples of different structures which break the conditional independence
assumption are shown in Fig. 1b–d. They are ordered by their structure complexity, which is related with the number of
dependencies between variables that they capture. Thus, the complexity ranges from the simplest naive Bayes to the com-
plete graph (CG) structure. On one hand, NB structure forbids any arc between predictor variables. On the other hand, the CG
structure includes all the possible arcs between predictors. NB does not model any class conditional dependence between
predictors, while CG models all the conditional dependencies. In tree-augmented naive Bayes (TAN) structures the maximum
number of parents for a predictor is constrained to one plus the class variable and in k-dependency Bayesian classifier (kDB)
structures to k plus the class variable. It must be noted that all the structures shown in Fig. 1 are constrained to graphs with
the class variable as the root. The class variable is the father of all predictor variables included in the model (NB augmented
classifiers).

The structures themselves represent domain knowledge and can be interpreted in terms of conditional independencies,
constructing the associated independence graph. In addition, they represent a factorization of the joint distribution qðc; xÞ,
which is based on the relations of conditional (in)dependencies that are inferred from the structure. In most cases the struc-
tures and their corresponding factorizations can allow a representation of the joint distribution with fewer parameters. For
example, given a domain with r class labels and d discrete predictors Xi with ri states, a complete graph structure requires
Hðr

Qd
i¼1riÞ parameters.1 On the other hand, a naive Bayes structure requires Hð

Pd
i¼1r � riÞ parameters.

A classifier based on BNs is determined by the structure of the graph and the distributions and density functions which
model the (in)dependence relations between the variables. In order to model a density function of a continuous variable,
three approaches are generally considered:

(1) To discretize it and estimate the probability distribution of the discretized variable by means of a multinomial prob-
ability distribution.

(2) To directly estimate the density function in a parametric way using, for example, Gaussian densities.
(3) To directly estimate the density function in a non-parametric way using, for example, the kernel density functions

[77].
(4) To directly estimate the density in a semi-parametric way using, for example, finite mixture models [28].
expression ‘‘the function a is HðbÞ” indicates that, in the worst case, a is bounded tightly by the function b asymptotically [14].
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The most widely used approach in the literature on supervised classification is the estimation using the multinomial dis-
tribution over the discretized variables. The BN which assumes that all variables follow a multinomial probability distribu-
tion is known as Bayesian multinomial network [10,65] (BMN) . This paradigm only handles discrete variables and if a
continuous variable is present, it must be discretized with the consequent loss of information [82]. The loss of information
is illustrated in Section 5.1.1 using six continuous artificial domains. In spite of that, using discretization plus multinomial
option, the true density is generally estimated with enough accuracy for classification purposes [11]. This approach could
have some problems when modeling a graph with a complex structure and/or with variables discretized in many intervals
because the number of parameters to be estimated can be very high, e.g. Hðr

Qd
i¼1riÞ for CG. Besides, as the number of param-

eters to be estimated increases, so does the risk of overfitting. Moreover, the number of relevant cases used to compute each
parameter can be very low and, therefore, the statistics obtained might not be robust [38]. A battery of BMN-based classifier
induction algorithms of different structural complexities has been proposed in the literature: naive Bayes (NB) [25,48,56],
tree-augmented naive Bayes (TAN) [30], k-dependence Bayesian classifier (kDB) [73], semi naive Bayes [47,64], Bayesian net-
work-augmented naive Bayes [11] and general Bayesian network [11]. From here on, the classifiers which are based on BMN
paradigm will be called multinomial classifiers.

The second approach directly estimates the true density of the variables using a parametric density. The Gaussian func-
tion is the most popular proposal and it usually provides a reasonable approximation to many real-world densities [41].
This choice assumes that continuous variables conditioned on a value of their parents follow a conditional Gaussian den-
sity. The paradigm, based on BN which makes this assumption, is known as conditional Gaussian network (CGN) [7,32,50–
52,62]. In this work, we reference the classifiers based on CGN as Gaussian classifiers. It must be noted that CGNs have
fewer complexity difficulties to model complex graphs than BMNs have, e.g. a complete graph with the class and contin-
uous predictors needs only Hðrd2Þ parameters to be modeled in the CGN paradigm. Besides, the estimation of the param-
eters is more reliable because they are learned from the partitions induced only by the class (by average n=r cases, where
n is the number of cases in the training set). If the true densities are not too far from the Gaussian, the classifiers based on
CGNs obtain classification error rates at least equal to the classifiers based on BMNs [62]. Although a Gaussian density
may provide a reasonable approximation to many real-world distributions, it is certainly not always the best approxima-
tion, e.g., bimodal densities. The decrease of the classification performance due to the loss of information under the Gaus-
sian assumption is illustrated in Section 5.1.1. This suggests another direction in which we might profitably extend and
improve the Gaussian (parametric) approach: by using more general approaches to density estimation, e.g., kernel density
estimation [41] (non-parametric).

In order to break with the strong parametric assumption, this work presents the kernel based Bayesian network (KBN)
paradigm. The KBN paradigm uses the non-parametric kernel density estimation for modeling the conditional density of a
continuous variable given a specific value of its parents, f ðxjC ¼ cÞ. The kernel estimation method can approximate more
complex distributions than the Gaussian parametric approach. Moreover, kernel density estimation can be seen as a more
flexible2 estimator compared to the multinomial distribution, in the same way that kernel density estimation is considered
more flexible than the histograms [77].

The alternative for breaking with the strong parametric assumption is the semi-parametric approach. The semi-paramet-
ric estimation combines the advantages of both parametric and non-parametric estimators. This approach is not restricted to
specific functional forms, and the size of the model only grows with the complexity of the problem being solved [4]. On the
other hand, the process of learning the semi-parametric model using the data set is computationally intensive compared to
the simple procedures needed for parametric or non-parametric learning procedures [4]. One of the most commonly used
non-parametric approaches is the so-called mixture model [28,55] and, especially, Gaussian mixture model [5,55]. However,
this work is focused in the non-parametric kernel based approach.

This work is an introduction of the KBN paradigm limited to the supervised classification using the Bayes rule. Conse-
quently, we present the KBN paradigm and a battery of classifier induction algorithms supported by it, many of them
adapted from the algorithms developed for the Bayesian multinomial network paradigm (NB [25,48,56], TAN [30] and
kDB [73]). The classifiers presented are ordered by their structural complexity, ranging from naive Bayes to complete graph.
We call the classifiers based on the KBN paradigm flexible classifiers. The origin of the term flexible comes from flexible naive
Bayes classifier [41], i.e. the NB structure in the KBN framework.

It must be noted that the BMN, CGN and KBN paradigms handle discrete variables similarly. Thus, given a discrete domain
(with discrete predictors only) and a structure, the three paradigms represent the same factorization of the joint distribution.
The experimentation of this work has been performed in continuous domains for highlighting the differences between the
BMN, CGN and KBN paradigms.

The paper is organized as follows. Section 2 introduces the non-parametric kernel based density estimation which will be
used to learn the KBN based classifiers. Section 3 presents a group of novel estimators for the computation of the amount of
mutual information based on kernels. Their corresponding expressions will be used by the classifier induction algorithms
proposed. Section 4 introduces a set of classifier induction algorithms, based on KBN. They are ordered by their structural
complexity: flexible naive Bayes, flexible tree-augmented Bayesian classifier, flexible k-dependence Bayesian classifier
2 We use the flexibility term in a qualitative way, not as a quantitative measure. It represents the capability of modeling densities of different shapes with
precision. For example, kernel density estimation is more flexible than the Gaussian approach because it can model clearly better densities with more than one
mode (see Section 5.1.1).
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and flexible complete graph classifier. Note that except for flexible naive Bayes [41], the rest of these classifiers are novel
approaches. The computational and storage requirements of the proposed algorithms are also analyzed. Moreover, the desir-
able asymptotic property of the flexible classifiers (strong pointwise consistency [41]) is proved. In Section 5 the experimen-
tal results for the classifiers proposed are presented and analyzed. The experimental study includes results in ten kinds of
artificial datasets and 21 datasets of the UCI repository [59]. The artificial domains illustrate the advantages of the classifiers
based on KBN paradigm, which model the correlations between predictors, for handling continuous predictor variables. They
also illustrate the loss of information due to the discretization process and the effect of the smoothing degree in the classi-
fication performance. The classification error in the 21 UCI repository datasets is estimated for the presented algorithms and
for 10 benchmarks. The estimated errors are compared using the Friedman plus Nemenyi post hoc test [19]. Additionally, the
effect of the smoothing degree in classification performance is studied in the selected datasets. The estimation of the bias
plus variance decomposition of the expected error [46] is also performed in some of the selected UCI data sets. And finally,
Section 6 summarizes the main conclusions of our paper and exposes the future work related with the KBN paradigm for
classification.

2. Kernel density estimation

The kernel based d-dimensional estimator [80] in its more general form is
Fig. 2.
estimat
f ðx; HÞ ¼ n�1
Xn

i¼1

KHðx� xðiÞÞ ð2Þ
where H is a d� d bandwidth or smoothing matrix (BM), x ¼ ðx1; . . . ; xdÞ is a d-dimensional instantiation of X, n is the number
of cases from which the estimator is learned, i is the index of a case in the training set, and KHð�Þ is the kernel function used.
Note that X is a multivariate variable and, thus, f ðx; HÞ is a multivariate function. The kernel based density estimate f ð�; HÞ is
determined by averaging n kernel densities KHð�Þ placed at each observation xðiÞ. The kernel function KHð�Þ used is defined as:
KHðxÞ ¼ jHj�1=2KðH�1=2xÞ ð3Þ
assuming that K is a d-dimensional density function. A kernel density estimator is characterized by means of

(1) The kernel density K selected.
(2) The bandwidth matrix H.

H plays the role of scaling factor which determines the spread of the kernel at each coordinate direction. The kernel den-
sity estimate is constructed centering a scaled kernel at each observation. So, the kernel density estimator is a sum of bumps
placed at the observations. The kernel function Kð�Þ determines the shape of the bumps. The value of the kernel estimate at
the point x is simply the average of the n kernels at that point. One can think of the kernel as spreading a ‘‘probability mass”
of size 1=n associated with each data point in its neighbourhood. Combining contributions from each data point means that
in regions where there are many observations it is expected that the true density has a relatively large value. The choice of
the shape of the kernel function is not particularly important. However, the choice of the value for the bandwidth matrix is
very important for density estimation [80]. Examples for the univariate and bivariate density estimation are shown in Fig. 2a
and b. Our KBN paradigm uses the d-dimensional Gaussian density with identity covariance matrix, R ¼ I, in order to esti-
mate density functions:
KðxÞ ¼ ð2pÞ�d=2 expð�1=2xTxÞ � Nð0; IÞ ð4Þ
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It must be noted that one can use another kernel function as well, such as Epanechnikov, biweight, triweight, triangular, rect-
angular or uniform [77,80].

Thus, KHðx� xðiÞÞ is equivalent to NðxðiÞ;HÞ density function. H is a square symmetric matrix d� d, and it has, in its most
general form, dðdþ1Þ

2 different parameters. This number of parameters can be very high, even for low dimensional densities.
This suggests constraining H to a less general form. For example, if a diagonal matrix is used, only d different parameters
must be learned.

2.1. Selecting the bandwidth matrix H

The selection of a good BM H is crucial for the density estimation, even more than the kernel generic function Kð�Þ [18]. H
establishes the degree of smoothing of the density function estimation.

In the univariate case, the smoothing degree depends on a unique parameter, h. Fig. 3 shows the effect of the parameter h
in the estimation of the true density using the same twelve training cases. Intuitively, with h near to zero, a noisy estimation
is obtained by the undersmooth effect (see Fig. 3a). As h increases the noise in the estimation is reduced and the univariate
density begins to approximate the true density, until the optimum3 is reached (see Fig. 3b). As h increases, and distances itself
from the optimum, the estimation starts to lose details due to the oversmooth effect (see Fig. 3c). Finally, as h tends to 1, the
function becomes uniform.

The degree of smoothing is crucial for density estimation [80], e.g. for minimizing the mean squared error. On the other
hand, the influence of the smoothing degree does not have such a crucial role in classification problems under 0–1 loss func-
tions, since density estimation is only an intermediate step for classifying. For example, Gaussian approach obtains good re-
sults in many non-Gaussian domains [62]. Intuitively, smoothing degree controls the sensitivity of the classifier to changes in
the training set. When the smoothing degree tends to zero, flexible complete graph classifier tends to the nearest neighbor
classifier (maximum sensitivity). When the smoothing degree tends to infinity, it tends to the Euclidean distance classifier
(minimum sensitivity) [68]. The effect of the smoothing degree in supervised classification has been empirically studied in
Sections 5.1.2 and 5.2.3.

In order to guarantee an efficient parametrization of a great number of densities, our goal is to use a computationally
inexpensive technique to compute the BM H. The number of parameters to be estimated for the specification of a full band-
width matrix for a d-dimensional density is dðdþ 1Þ=2. This number becomes unmanageable very quickly as d increases,
which suggests that H should be restricted to a simpler form [78]. In this work we use differential scaled [78] approach be-
cause it depends on a unique smoothing parameter h : H ¼ diagðh2

1; . . . ;h2
dÞ ¼ h2diagðs2

1; . . . ; s2
dÞ, where hi is the smoothing

parameter of the variable Xi; si is a dispersion measure (e.g. sample standard deviation of Xi) and diagð�Þ represents a diagonal
matrix. This parametrization allows different amounts of smoothing in each coordinate direction and it performs an implicit
standardization of the variables.

The principal problem selecting optimum BM, in the majority of practical situations, is that the real density function is
unknown. Thus, in general, it is impossible to optimize any appropriate loss criteria (a distance function between the real
and estimated densities). In our work, we use the normal rule [77]. It selects the BM that minimizes the mean integrated
square error of the estimated density, under the assumption that the variables follow a multidimensional Gaussian density
with identity covariance matrix I. Under this assumption we can compute the optimum h as follows [77]:
3 The
respect
h ¼ 4
ðmþ 2Þn

� � 1
mþ4

ð5Þ
where m is the number of continuous variables in the density function to be estimated in spite of the number of continuous
variables in the domain, d. For example, in order to model the density f ðx1; . . . ; xlÞ we set m ¼ l in Eq. (5).

We have chosen the normal rule plus differential scaled [78] approach because it obtains density estimations that are
good enough for classifying (see Sections 5.1.2 and 5.2.3). Furthermore, we know that the normal rule tends to oversmooth
optimum is defined in terms of a loss function. Mean squared error and classification error are usually used in density estimation and classification,
ively. The optimum term is defined as the parameter value which minimizes the selected loss function.



Table 1
Storage and computational requirements of a classifier with a kDB structure based on both KBN paradigm, with the differential scaled bandwidth matrix plus
the normal rule approach, and CGN paradigm

CGN based KBN based

Training space Testing time Training space Testing time

Hðrd2Þ Hðrdðkþ 1ÞÞ Hðndþ rðdþ 1ÞÞ Hðndðkþ 1ÞÞ

The domain has d predictor variables and r classes, the training set has n cases. The computational requirements have been obtained for classifying a new
instance.
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[80] the estimation and, thus, it could obtain more stable estimations with noisy data, i.e. estimations with less variance.
At the same time, it avoids the increase of the high computational requirements related to the classifier learning process
(see Table 1). It only has to compute a fixed number of operations independently from the dimension of the density and
the number of examples used to estimate it. There are other approaches to decide the smoothing degree for obtaining a good
classification performance. The wrapper approach [43,45] could be one of the most interesting procedures from the perfor-
mance point of view (see Sections 5.1.2 and 5.2.3). But it involves intensive computations with flexible classifiers, especially
compared with the normal rule.

3. Mutual information and conditioned mutual information estimators

In this section we propose a set of novel estimators based on kernels for the computation of the amount of mutual and
conditioned mutual information [15]. These estimators will be used in the classifier induction algorithms presented in Sec-
tion 4. The estimators are presented in their multivariate form and they inherit the flexibility properties of the kernel density
estimation. Thus, we think that they are suitable to compute the amount of mutual information between any pair of contin-
uous variables.

Some mutual information based measures are directly related to the expected error of BN based classifiers at different
structural complexity levels [61]. Improving the conditioned mutual information, IðXi; XjjCÞ, is likely to decrease the Kullback
Leibler divergence between the true and the estimated joint probability distribution. The algorithm TAN proposed by Fried-
man et al. [30], which guides the structural learning with the conditioned mutual information, finds a maximum likelihood
TAN structure. Besides, the rank of variables obtained with the use of mutual information, IðXi; CÞ, sorts the variables by the
class entropy reduction, HðCjXiÞ. The class entropy reduction is directly related with the discriminative power of a variable
[61]. For example, if IðXi; CÞ > IðXj; CÞ then HðCjXiÞ < HðCjXjÞ and, therefore, the classifier which includes only the variable Xi

instead of Xj tends to obtain lower classification errors.
The amount of mutual information between two multivariate variables (random vectors) X and Y is defined as [15]
IðX;YÞ ¼
Z

f ðx; yÞ log
f ðx; yÞ

f ðxÞf ðyÞdxdy ¼ Epðx;xÞ log
f ðx; yÞ

f ðxÞf ðyÞ

� �
ð6Þ
Based on this definition we propose the following estimator, bIðX;YÞ, for the amount of mutual information between two con-
tinuous multivariate variables X and Y, IðX;YÞ, using kernel density estimation based on a training set of size
n; fðxð1Þ; yð1ÞÞ; . . . ; ðxðnÞ; yðnÞÞg:
bIðX;YÞ ¼ 1
n

Xn

i¼1

log
f̂ ðxðiÞ; yðiÞÞ

f̂ ðxðiÞÞf̂ ðyðiÞÞ
ð7Þ
where f̂ ð�Þ is a kernel based density estimation (see Eq. (2)). Note that Eq. (7) estimates the expectance of the function
log½f ðx; yÞ=ðf ðxÞf ðyÞÞ�, when the instances of the training set are independent and identically distributed [6]. This estimation
becomes exact in the limit, as n!1 [6]. Another proposal based on kernels can be found in [57].

Alternatively, in order to compute the amount of mutual information between a multivariate continuous variable X and a
multivariate discrete variable C we propose the following estimator:
bIðX;CÞ ¼ 1
n

Xn

i¼1

log
q̂ðxðiÞ; cðiÞÞ

f̂ ðxðiÞÞp̂ðcðiÞÞ
¼ 1

n

Xn

i¼1

log
f̂ ðxðiÞjcðiÞÞ

f̂ ðxðiÞÞ
ð8Þ
where q̂ðxðiÞ; cðiÞÞ ¼ p̂ðcðiÞÞf̂ ðxðiÞjcðiÞÞ. p̂ðcÞ is the estimated multinomial distribution of variable C and f̂ ðxjcÞ is the kernel based den-
sity estimator of variable X conditioned on C ¼ c (computed with the partition of the cases which have the class value C ¼ c).

The amount of mutual information between two multivariate continuous variables, X and Y, conditioned on a multidi-
mensional multinomial variable C is defined as
IðX;Y jCÞ ¼
XjCj
c¼1

pðcÞIcðX;YÞ ð9Þ
where IcðX;YÞ ¼ Epðx;xjC¼CÞ log f ðx;yjcÞ
f ðxjcÞf ðyjcÞ

� �
. Using Eqs. (7) and (9), we propose the following estimator for the amount of condi-

tioned mutual information:
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bIðX;Y jCÞ ¼XjCj
c¼1

p̂ðcÞ 1
nc

Xc:nc

i¼c:1

log
f̂ ðxðiÞ; yðiÞjcÞ

f̂ ðxðiÞjcÞf̂ ðyðiÞjcÞ
ð10Þ
The super-index c : j refers to the jth case in the partition induced by the value c, and nc is the number of cases verifying that
C ¼ c.

All the estimators presented in Eqs. (7), (8) and (10) can be adjusted to any KBN based classifier because X, Y and C can be
of any arbitrary dimension.
4. Classifiers based on kernel based Bayesian networks: flexible classifiers

The densities to be estimated in the KBN paradigm with continuous predictors are of the form f ðxjy; cÞ, X and Y being con-
tinuous multivariate predictor variables and C the class variable, a univariate discrete variable. That is the essence of the KBN
paradigm. The estimation of the density function f ðxjy; cÞ can be determined in the following form using kernel density
estimation:
f ðxjy; cÞ ’ f̂ ðxjy; cÞ ¼ f̂ ðx; yjcÞ
f̂ ðyjcÞ
As we have explained at the beginning of Section 1, in order to classify a new unlabeled instance, x, the factorization of qðc; xÞ
is evaluated for every value of the class, c 2 f1; . . . ; rg. Then the a posteriori probabilities for each class, pðcjxÞ, are obtained
using the Bayes rule. Finally, classification is performed under winner-takes-all rule, i.e. choosing the class c� with the max-
imum a posteriori probability, c� ¼ argcmaxpðcjxÞ. Note that in the classification of an unlabeled case all the instances in the
training set are used for computing the factorization based on kernel density estimation (see Section 2).

Typically, for modeling domains with continuous and discrete variables CGN paradigm has the following structural con-
straint: a continuous predictor cannot be parent of a discrete predictor. This constraint could be avoided for the KBN para-
digm (and also for the CGN) using the Bayes rule as follows:
pðxdjxc; cÞ ¼ pðxd; cÞpðxcjxd; cÞ=pðcÞpðxcjcÞ
where Xd is a multivariate discrete variable (discrete random vector) and Xc a multivariate continuous one. However, as we
have noted before, this work is centered on the difficulties of modeling continuous variables and their relations in the KBN
paradigm.

The following sections present a group of flexible classifier induction algorithms, ordered by their structural complexity:
flexible naive Bayes, flexible tree-augmented naive Bayes, flexible k-dependence Bayesian classifier and complete graph
Bayesian classifier. Note that all the classifiers presented in this paper are extensions of the flexible naive Bayes classifier
[41]. Thus, in the presented models, the class variable is the father of each predictor variable. Examples of their different
structure complexities are shown in Fig. 1.
4.1. Flexible naive Bayes

The least complex structure is the naive Bayes structure (NB structure), which assumes that predictor variables are con-
ditionally independent given the class. The naive Bayes classifier induction algorithm (NB) [25,48,56] learns the complete na-
ive Bayes structure, which is known a priori. The accuracy obtained with this classifier is surprisingly high in some domains,
even in datasets that do not obey its strong conditional independence assumption [23]. Thanks to the conditional indepen-
dence assumption, the factorization of the joint probability is greatly simplified.

Originally, NB classifier was introduced for the BMN (multinomial NB or mNB) and it was adapted to the KBN paradigm
(flexible NB or fNB) by John and Langley [41]. This classifier has been recently used in [8,53,54]. It must be noted that our
version of the fNB uses the normal rule [77] for computing h instead of the heuristic proposed in [41].

4.2. Flexible tree-augmented naive Bayes

The tree-augmented naive Bayes structures (TAN structures) break with the strong independence assumption made by
NB structures, allowing probabilistic dependencies among predictors. The TAN structures consist of graphs with arcs from
the class variable to all the predictors, and with arcs between predictors, taking into account that the maximum number
of parents of a variable is one plus class. Example of the TAN structure is shown in Fig. 1b.

This section introduces the novel adaptation of Friedman et al.’s [30] algorithm to the KBN paradigm. Friedman et al.’s
algorithm [30] follows the general outline of Chow and Liu’s procedure [13], but instead of using the mutual information
between two variables, it uses conditional mutual information between predictors given the class variable to construct
the maximal weighted spanning tree. In order to adapt this algorithm to continuous variables, we need to estimate the mu-
tual information between every pair of continuous predictor variables conditioned by the class variable IðXi;XjjCÞ, computing
the estimator proposed in Eq. (10).
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The algorithm [30] starts from a complete NB structure and continues adding allowed edges between predictor until the
complete TAN structure is formed. The edges are included in the order of decreasing estimation of the conditional mutual
information, IðXi;XjjCÞ. The edges included between predictors create a tree structure. In order to decide the direction of
the edges, we randomly select one predictor as the root of the tree and transform the edges between predictors into arcs.
Originally, the TAN algorithm was introduced for BMN (multinomial TAN of mTAN) [30]. This paper adapts it to the novel
KBN paradigm (flexible TAN or fTAN).

4.3. Flexible k-dependence Bayesian classifier

The k-dependence Bayesian classifier structure (kDB structure) extends TAN structures allowing a maximum of k predic-
tor parents plus the class for each predictor variable (NB, TAN and CG structures are equivalent to kDB structures with
k ¼ 0; k ¼ 1 and k ¼ n� 1, respectively). An example of the kDB structure is shown in Fig. 1c.

The kDB structure allows each predictor Xi to have not more than k predictor variables as parents. There are two reasons
to restrict the number of parents of a variable with algorithms based on BMNs. Firstly, the reduction of the search space.
Secondly, the probability estimated for a multinomial variable becomes more unreliable as additional multinomial parents
are added. That is because the size of the conditional probability tables increases exponentially with the number of parents
[73], and fewer cases are used to compute the necessary statistics. The use of a KBN instead of a BMN avoids the problem of
modeling a structure without the restriction in the number of parents, as the number of required parameters only grows
linearly with the differentially scaled plus normal rule approach. In addition, to estimate the parameters, the entire dataset
is used instead of learning from a dataset partition. Thus, the KBN paradigm allow the construction of classifiers with a high
number of dependencies between continuous variables.

This section introduces the novel adaptation of Sahami’s [73] algorithm, called k-dependence Bayesian classifier, to the
KBN paradigm. This algorithm is a greedy approach which uses the class conditioned mutual information between each pair
of predictor variables IðXi;XjjCÞ and the mutual information between the class and each predictor IðXi;CÞ to lead the structure
search process. In order to adapt this algorithm to the KBN paradigm, we compute the amounts of mutual information IðXi; CÞ
and IðXi;XjjCÞ, using the estimators proposed in Eqs. (8) and (10), respectively.

Sahami’s algorithm [73] starts from a structure with only the class variable. At each step, from the subset of non-included
predictor variables, the variable Xmax with the highest IðXi;CÞ is added. Next, the arcs are added from the predictors previ-
ously included in the structure until the variable Xmax. The arcs are included following the order of IðXmax;XjjCÞ, from the
greatest value to the smallest. They are added as long as the maximum number of parents k is not surpassed. Originally,
kDB algorithm was introduced for the BMN (multinomial kDB or mkDB) and we have adapted it to the KBN paradigm (flex-
ible kDB or fkDB).

4.4. Flexible complete graph classifier: Parzen window classifier

All the complete graphs represent the same factorization of the joint distribution, a factorization without any simplifica-
tion derived from the conditional (in)dependence statements. We can take any of the complete acyclic graphs for classifica-
tion because they are Markov equivalent [12]. Therefore, the structure of the flexible complete graph classifier (fCG) can be
fixed randomly provided that there are no cycles. An example of this structure is shown in Fig. 1d.

The CG structure can be seen as the particular case of kDB when k P d� 1, but avoiding the cost associated with its struc-
tural learning. Moreover, the fCG classifier is equivalent to the Parzen window classifier [31,63,71].

4.5. Storage and computational complexity

KBN based classifiers require more storage space and have more computational cost than CGN based classifiers for learn-
ing and classifying new instances. First, we introduce the requirements associated with the structural learning and then, the
requirements associated with the parametric learning. At the end, the requirements related to each of the KBN based clas-
sifiers introduced are presented.

In order to obtain the structure to be modeled from data (structural learning), generally, the classifier induction algo-
rithms proposed in this section need to compute the amount of mutual information between every pair of variables condi-
tioned on the class (for all i and j; IðXi;XjjCÞ), and the mutual information between each variable and the class (for all
i; IðXi;CÞ).4 The number of operations involved for computing IðXi; XjjCÞ, using the estimator based on kernels proposed in
Eq. (10), is H

P
cn2

c

� �
, where nc is the number of instances in the partition of the training set induced by c. Thus, TAN and

kDB algorithms need H d2P
cn2

c

� �
computations, where d is the number of predictor variables included in the model. The

computational cost for computing IðXi; CÞ, given the estimator proposed in Eq. (7), is Hðn2Þ. Therefore, kDB algorithm needs
Hðdn2Þ computations additionally.

For modeling a classifier based on the KBN paradigm (using differentially scaled plus normal rule approach) from data
given its structure (parametric learning), every instance in the training set and the variances of the predictors conditioned
4 The structure for NB and CG classifiers are given a priori and, therefore, their computational cost is constant.



A. Pérez et al. / International Journal of Approximate Reasoning 50 (2009) 341–362 349
on each class c are stored. Therefore, a classifier with kDB structure stores Hðndþ rðdþ 1ÞÞ values (cases and parameters) to
proceed with classification, regardless wether considering NB, TAN or CG complexity. In order to classify a new instance, the
same KBN based classifier requires to compute Hðndðkþ 1ÞÞ operations. Table 1 summarizes the storage and computational
complexity for both CGN and KBN based classifiers given a kDB structure.

Therefore, the number of operations for learning each flexible classifier proposed is: HðndÞ for fNB [41] and fCG,
H d2P

cn2
c

� �
for fTAN, and H d2P

cn2
c þ dn2

� �
for fkDB. Due to the high computational requirements for learning the classifier

and for classifying new instances, it can be said that flexible classifiers are more suitable for low and medium sized datasets.

4.6. Asymptotic properties of flexible classifiers

In this section we discuss the asymptotic properties of the flexible classifiers for modeling the conditional distribution of
the class given the predictors, pðCjXÞ. The Section is based on the definition of strong pointwise consistency and the theorems
and lemmas presented by John and Langley in [41].

Definition 1 (Strong pointwise consistency [41]). If f ðxÞ is a probability density function and f̂ nðxÞ is a kernel estimate of f ðxÞ
based on n independent and identically distributed instances, then f̂ nðxÞ is strongly pointwise consistent if f̂ nðxÞ ! f ðxÞ
almost surely for all x; i.e., for every � > 0; pðlimn!1jf̂ nðxÞ � f ðxÞj < �Þ ¼ 1.

The strongest asymptotic results we could hope for regarding flexible classifier would be that its estimate of pðCjXÞ is
strongly consistent.

John and Langley demonstrate, based on [9], the consistency of kernel density estimation for modeling continuous variables
(strong consistency for reals theorem [41]). It must be noted that kernel density estimate using Gaussian kernel with the normal
rule satisfies the constraints of the strong consistency for reals. Then, they demonstrate, based on [20], the consistency of the
multinomial approach used by the flexible classifiers among others (strong consistency for nominals [41]). Furthermore, they
demonstrate the consistency of the product of strongly consistent estimates (consistency of products [41]) and the related con-
sistency of the quotient (see the proof of Theorem 3 in [41]). Following, based on these lemmas and theorems, we demonstrate
the strong consistency of a flexible classifier when its structure captures the true conditional dependencies of the domain.

Lemma 2 (Consistency of flexible factors). The estimates of flexible classifiers for each factor f ðxjpa; cÞ is strongly consistent,
where X is a continuous or discrete variable and Pa a set of continuous and/or discrete variables.

Proof. Any factor f ðxjpa; cÞ, using the Bayes rule, can be decomposed into a quotient of products of probability density func-
tions f ðajbÞ; f ðbÞ or f ðaÞ, where A is a set of continuous variables and B a set of discrete ones. The probability density functions
f ðajbÞ; f ðbÞ and f ðaÞ are strongly consistent. By the strong consistency of the product and the quotient [41] the flexible clas-
sifier’s estimator of each factor f ðxjpa; cÞ is strongly consistent. h

Lemma 3 (Consistency of flexible classifiers). Let the true conditional distribution of the class given the attributes be pðCjXÞ ¼
pðCÞ
Qd

i¼1
f ðxi jPai ;CÞQd

i¼1
f ðxi jPaiÞ

. A flexible classifier p̂ðCjXÞ ¼ p̂ðCÞ
Qd

i¼1
f̂ ðxi jPai ;CÞQd

i¼1
f̂ ðxi jPaiÞ

is a strongly consistent estimator of pðCjXÞ.

Proof. By Lemma 2 flexible classifier’s estimates of factors PðCÞ; f ðxijPaiÞ and f ðxijPai;CÞ are strongly consistent. Then, by the
strong consistency of products and quotients, flexible classifier’s estimate of pðCjXÞ is strongly consistent. h

Therefore, by Lemma 3 a flexible classifier is a strongly consistent estimator when the conditional dependencies of
the domain are captured by its structure. This fact is illustrated in Section 5.1.1 by means of six representative artificial
domains.
5. Experimental results

This section presents the experimental results of the previously introduced flexible classifiers: from fNB to fCG.
First, in Section 5.1, we study the behavior of the flexible classifiers and its sensitivity to changes in the smoothing degree

using artificial domains. Then, in Section 5.2, we present a set of results in 21 UCI repository continuous datasets [59]. These
results include a comparison of the classifiers using the Friedman plus Nemenyi post hoc test [19] based on the estimated
errors (Section 5.2.2), the study of the effect of the smoothing degree in the performance of flexible classifiers (Section 5.2.3),
and the bias plus variance decomposition of the expected error [46] (Section 5.2.4).

5.1. Artificial datasets

This section, which includes two subsections, illustrates the behavior of the flexible classifiers using artificial domains.
Section 5.1.1 studies the classification performance of the NB and TAN classifiers based on the BMN, CGN and KBN para-
digms, by means of six ad hoc designed representative artificial datasets. The use of the flexible classifiers which model
the correlation between predictors is justified, presenting their advantages. Section 5.1.2 studies the effect of the smoothing
degree in the performance of the flexible classifiers by means of four artificial domains.
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At each artificial domain a parameter k is fixed in order to guarantee a Bayes error of �B ¼ 0:1. We define the error of a
classifier M under the winner-takes-all rule [26] as:
�M ¼
Z

f ðxÞð1� pðc�jxÞÞdx ð11Þ
where pð�Þ and f ð�Þ are the true probability distribution and density functions of the domain, respectively, and
c� ¼ argcmax½pMðcjxÞ� under the winner-takes-all rule. The Bayes error �B is defined as the error of the Bayes classifier, which
is obtained by the decision c� ¼ argcmax½pðcjxÞ� under the winner-takes-all rule.

5.1.1. Error estimation
This section illustrates the differences between NB and TAN classifiers based on the BMN (plus discretization [27]), CGN

and KBN paradigms. For this purpose, we have designed four representative artificial domains with two continuous predic-
tors, fX;Yg, and two equally probable classes, c 2 f0;1gwith pðC ¼ 0Þ ¼ 0:5. It must be noted that TAN, kDB (at k > 0 values),
and complete graph structures are equivalent in the bivariate domains. Taking into account the dependencies between pre-
dictor variables (correlated or non-correlated) and four types of densities (Gaussian, Gaussian mixture, chi square and chi
square mixture), we propose the following six domains:

� Domains with non-correlated Gaussian predictors (NCG).
� Domains with correlated Gaussian predictors (CG).
� Domains with non-correlated Gaussian mixture predictors (NCGM).
� Domains with correlated Gaussian mixture predictors (CGM).
� Domains with non-correlated chi square predictors (NCCh).
� Domains with correlated chi square mixture predictors (CChM).

We have used the mixture of two or three densities for each class (NCGM, CGM and CChM) so as to model non-Gaussian
densities. Note that these densities are very different to a single Gaussian. The chi square domains (NCCh y CChM) are based
on the following pseudo-chi square density:
fchiðx; x0;jÞ ¼
1

2j=2Cðj=2Þ
xðj=2Þ�1e�ðx�x0Þ=2 x� x0 > 0

0 otherwise

(
ð12Þ
where j specifies the number of degrees of freedom. In order to experiment with long tailed densities, we have set j ¼ 4.
Besides, in contrast to the symmetry of the Gaussian density, pseudo-chi square has a skewness of

ffiffiffiffiffiffiffiffiffi
8=j

p
. The bivariate ver-

sion of pseudo-chi square is defined as fchiðx; y; ðx0; y0Þ;jÞ ¼ fchiðx; x0;jÞ � fchiðy; y0;jÞ.
We have created by simulation the training and test sets for each of the mentioned domains. Each simulated dataset is

defined by means of its associated generalized probability function qðx; y; cÞ ¼ pðcÞf ðx; yjcÞ. In order to obtain a domain with
dependent variables given the class, we use a function f ðx; yjcÞ which can not be decomposed into f ðxjcÞf ðyjcÞ. The NCG, CG,
NCGM, CGM, NCCh and CChM domains are defined by the following densities f ðx; yjcÞ:

� The NCG dataset is generated from the density functions defined by f ðx; yjcÞ ¼ f ðxjcÞf ðyjcÞ where f ðxjC ¼ 0Þ 	 f ðyj0Þ �
Nðl0 ¼ 0;r2

0 ¼ 1Þ and f ðxj1Þ 	 f ðyj1Þ � Nðk;1Þ with k ¼ 1:8 (see Fig. 4a).
� The CG dataset is defined by the density functions f ðx; yj0Þ � Nðl0Þ ¼ ð0;0Þ;R0 ¼ ½1;0:75; 0:75;1� and f ðx; yj1Þ � Nððk; kÞ;
½1;�0:75;�0:75;1�Þ with k ¼ 1:4 (see Fig. 4b).
� The NCGM dataset is defined by the mixture functions f ðxj0Þ 	 f ðyj0Þ � 0:5Nð0;1Þ þ 0:5Nðk;1Þ and f ðxj1Þ 	

f ðyj1Þ � 0:5Nðk=2;1Þ þ 0:5Nð3k=2;1Þ with k ¼ 4:7 (see Fig. 4c).
� The CGM dataset is defined by the mixture functions f ðx; yj0Þ � 1=3ðNðð0;0Þ; I ¼ ½1;0; 0;1�Þ þ Nððk; kÞ; IÞ þ Nðð0;2kÞ; IÞÞ

and f ðx; yj1Þ � 1=3ðNððk; 0Þ; IÞ þ Nðð0; kÞ; IÞ þ Nððk;2kÞ; IÞÞ with k ¼ 3:4 (see Fig. 4d).
� The NCCh dataset is generated from the density functions defined by f ðx; yj0Þ ¼ fchiðx; y; ðx0; y0Þ ¼ ð0;0Þ;j ¼ 4Þ and

f ðx; yj1Þ ¼ fchiðx; y; ðk; kÞ;4Þ with k ¼ 3:5 (see Fig. 4a).
� The CChM dataset is defined by the mixture functions f ðx; yj0Þ ¼ 1=3½fchiðx; y; ð0;0Þ;4Þ þ fchiðx; y; ðk; kÞ;4Þþ

fchiðx; y; ð0;2kÞ;4Þ� and f ðx; yj1Þ ¼ 1=3½fchiðx; y; ð0; kÞ;4Þ þ fchiðx; y; ðk;0Þ;4Þ þ fchiðx; y; ðk;2kÞ;4Þ� with k ¼ 7:9 (see Fig. 4d).

It must be noted that the NCCh and CChM domains are similar to the NCG and CGM (see Fig. 4), replacing Gaussian by
pseudo-chi square densities.

In order to study the errors of different classifiers (mNB, mTAN, gNB, gTAN, fNB and fTAN) with different training set sizes,
at each artificial domain proposed, we have sampled training sets with 10, 20, 40, 80, 160, 320, 640, 1280 and 2560 cases.
The experiments have been repeated 50 times for estimating the classification errors for each training set size. All the clas-
sifiers learned have been tested on an independent dataset of 3000 cases. The variables have been discretized [27] for each
training-test pair, learning the discretization policies from the training set. The evolution of the errors estimated, with each
classifier learned, is presented in Fig. 5.



–3–2–1012345
–3

–2
–1

0
1

2
3

4
5

0
0.02
0.04
0.06
0.08

–3–2–1
012345–3

–2
–1

0
1

2
3

4
5

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

–4–20246810
–4

–2

0

2

4

6

8

10
0
0.005
0.01
0.015
0.02

–3–2–101234567–4

–2

0

2

4

6

8

10
0
0.005
0.01
0.015
0.02
0.025
0.03

Fig. 4. Visualization of the artificial domains proposed. At each artificial domain f ðx; y; c ¼ 0Þ is represented with broken lines and a lighter surface, and
f ðx; y; c ¼ 1Þ with continuous solid lines and a darker surface.

A. Pérez et al. / International Journal of Approximate Reasoning 50 (2009) 341–362 351
From the results shown in Fig. 5, the following conclusions can be obtained:

� In the NCG domain (see Fig. 4a) all the classifiers reach the Bayes error. Gaussian and flexible classifiers behave similarly
(see Fig. 5a). They reach the Bayes error with training sizes of 160 or greater. This suggests that NCG domains can be
modeled similarly for classifying using the kernel density estimation and the parametric Gaussian approach. The multi-
nomial classifiers show a slower learning curve.
� In the CG domain (see Fig. 4b) the classifiers which do not model the correlation between predictors (gNB, mNB and

fNB) seem to behave somewhat worse than gTAN and fTAN (see Fig. 5b). Gaussian and flexible TAN reach the Bayes error
with training size of 320 or greater. By contrast, mTAN does not reach the Bayes error but behaves a little better than NB
classifiers. These results suggest that CG domains could generally be better modeled by Gaussian and flexible classifiers
which consider the correlation between predictor variables. Thus, gTAN and fTAN show a better behavior than gNB and
fNB, respectively.
� In the NCGM domain (see Fig. 4c) the flexible classifiers behave notably better than Gaussian based classifiers (see

Fig. 5c). Flexible and multinomial classifiers reach the Bayes error, but flexible classifiers converge to the Bayes error
quicker. Flexible classifiers can clearly model the NCGM domains better than Gaussian classifiers.
� In the CGM domain (see Fig. 4d) flexible TAN classifier behaves clearly better than the rest of the classifiers (see Fig. 5d).

This result suggests the importance of modeling the correlation between predictors using kernel based density estima-
tion for the CGM domains. Multinomial TAN plus discretization converges to the same error value as NB models. Each
variable is discretized independently, in an univariate way. Thus, the discretization algorithm [27] loses useful informa-
tion about the class conditional dependencies between predictor variables. It must be noted that the most used discret-
ization algorithms are univariate [24].
� The results in the NCCh domain are similar to those obtained in the NCGM. The flexible classifiers behave clearly better

than Gaussian based classifiers (see Fig. 5e). Flexible and multinomial classifiers reach the Bayes error but multinomial
classifiers converge to the Bayes error quicker.
� The results in the CChM domain are similar to those obtained in the CGM. In the CChM domain flexible TAN classifier

behaves clearly better than the rest of the classifiers (see Fig. 5f). Again, these results suggest the importance of



Fig. 5. The graphics represent the evolution, with respect to the number of cases, of the errors of different classifiers (mNB, mTAN, gNB, gTAN, fNB and
fTAN) in each of the artificial domains proposed.
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modeling the correlation between predictors with flexible classifiers. Multinomial TAN plus discretization converges to
the same error value as NB models. The discretization algorithm [27] loses useful information once again, due to its uni-
variate nature.

Taking into account the six continuous domains presented, at each structural complexity level, the flexible classifiers
seem to be at least equally suitable as the Gaussian and multinomial classifiers (plus univariate supervised discretization
[27]) for classifying in any continuous domain. Flexible classifiers which model the true dependencies between predictor
variables reach the Bayes error in the artificial domains proposed.

In Gaussian domains, the flexible classifiers show a learning curve similar to the Gaussian classifiers. Multinomial clas-
sifiers have a slower learning curve than flexible classifiers at each type of the proposed domain (except in the NCCh do-
main). Flexible TAN, which models correlations between variables, obtains acceptable errors (less than 15%) with training
set sizes of 20 in the NCG and CG domains, with 40 cases in the CGM and CGM domains, and with 160 cases in the NCCh
and CChM domains. Besides, it reaches the Bayes error with less than 1280 training cases in most of the domains. This sug-
gests that flexible classifiers which model the true dependencies between variables could perform well in multi-modal do-
mains, even with small sample sizes.
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5.1.2. Smoothing degree
This section illustrates the effect of the smoothing degree in the performance of the flexible classifiers. For this purpose,

we have designed four representative univariate artificial domains.

� Gaussian domain (Ga).
� Gaussian mixture domain (GaM).
� Chi square domain (Ch).
� Chi square mixture domain (ChM).

It must be noted that all the presented flexible classifiers are equivalent in the univariate domains.
The training and test sets of each of the four univariate artificial domains have been created by simulation. Each simulated

dataset is defined by means of its associated generalized probability function qðx; cÞ ¼ pðcÞf ðxjcÞ. The domains have two
equally probable classes, c 2 f0;1g with pðC ¼ 0Þ ¼ 0:5. They are defined by the following densities f ðxjcÞ:

� Ga domain: f ðxjC ¼ 0Þ � Nðl ¼ 0;r2 ¼ 1Þ and f ðxj1Þ � Nðk;1Þ with k ¼ 2:5.
� GaM domain: f ðxj0Þ � 1=2½Nð0;1Þ þ Nð2k;1Þ� and f ðxj1Þ � 1=2½Nðk;1Þ þ Nð3k;1Þ� with k ¼ 3:0.
� Ch domain: f ðxj0Þ ¼ 1=2½fchiðx; x0 ¼ 0;j ¼ 4Þ and f ðxj1Þ ¼ fchiðx; k;4Þ with k ¼ 5:8.
� ChM domain: f ðxj0Þ ¼ 1=2½fchiðx; 0;4Þ þ fchiðx; 2k;4Þ� and f ðxj1Þ ¼ fchiðx; k;4Þ þ fchiðx; 3k;4Þ� with k ¼ 6:8.

In order to study the errors of flexible classifiers with different training set sizes, at each artificial domain proposed, we
have sampled training sets with 10, 25, 100 and 250 cases. The experiments have been repeated 50 times to estimate the
errors for each training set size. We have generated 50 training sets for each train size and 50 test sets with 3000 cases.
The variables have been discretized independently for each training-test pair. The discretization policies and the classifiers
have been learned using the training set.

At each experiment we compute the smoothing parameter h using the normal rule plus differential scaled (see Section
2.1). Note that the variance has been obtained using the maximum likelihood estimator. Then, the bandwidth matrix
H ¼ h2 is scaled using the following 18 coefficients, {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2.5, 5, 7.5, 10,
25, 75, 100}. For each scaled value of h2 the classification error is estimated. Note that this scaling process can be understood
as a wrapper optimization of the smoothing parameter, h.

The evolution of the estimated classification errors with respect to the smoothing degree are presented in Fig. 6.
The standard deviation, r, is the most common measure of statistical dispersion, measuring how widely spread the values

in a dataset are. The standard deviation is very sensitive to outliers. Note that the data obtained from long tailed densities
Fig. 6. The effect of the smoothing degree in the performance of the flexible classifiers.



354 A. Pérez et al. / International Journal of Approximate Reasoning 50 (2009) 341–362
generally presents outliers, e.g. chi square with j ¼ 4. This sensitivity is increased when the training set has few cases. It also
increases when the density presents more than one mode, such as the GaM and ChM domains. Under these conditions the
deviation overestimates the spread of the data. We say that standard deviation is overestimating the spread if the interval
½l� r;lþ r� contains more than 90% of the cases.

The normal rule tends to oversmooth the estimations. Taking into account that the standard deviation tends to overes-
timate the spread of the data, the effect of the oversmoothing of the normal rule is increased. Next, the results presented in
Fig. 5 are analyzed, taking into account the properties of the standard deviation and normal rule:

� In the Ga domain (see Fig. 6a) the standard deviation obtains a good measure of the spread of the data. In this case the
normal rule obtains good estimations for classifying.
� In the GaM domain (see Fig. 6b) the deviation is overestimating the spread, especially with small training sets (10, 25).

Given enough cases (more than 25), the normal rule obtains good estimations for classifying.
� In the Ch domain (see Fig. 6c) the deviation is overestimating the spread, especially with small training sets (10, 25). The

normal rule obtains good estimations when the training set has enough cases (more than 25).
� In the ChM domain (see Fig. 6d) the deviation overestimates the spread of the data, especially with small training sets.

Besides, the normal rule increases the oversmoothing effect. In spite of the oversmoothing, the normal rule obtains good
approximations for classifying when the training set has enough cases (more than 25).

These results suggest that it could be useful to compute a spread measure more robust to outliers than the standard devi-
ation, e.g. the interquartile range. The normal rule tends to obtain enough good density estimations for classifying if the devi-
ation does not overestimate the spread of the training data. Besides, flexible classifiers seem to have a good classification
behavior even when the optimum smoothing degree is not used. Moreover, they seem to be quite insensitive to the optimum
smoothing parameter, especially when the training set has enough cases (more than 25 in the univariate case). Note that, for
training sizes of 100 and 250, Fig. 6 presents error curves close to the Bayes error (0.1) with different scaling coefficient values:
in Ga domain the error curves are close to the Bayes error for values in [0.01, 50] (see Fig. 6a), in GaM domain for values in [0.01,
2.5] (see Fig. 6b), in Ch domain for values in [0.01, 50] (see Fig. 6c) and in ChM domain for values in [0.01, 2.5] (see Fig. 6d).

On the other hand, Fig. 6 suggests that the performance of the flexible classifiers could be improved when the optimiza-
tion of the smoothing degree is performed in a wrapper way, especially for small databases.
5.2. UCI datasets

This section is divided in three main parts. In Section 5.2.2 the classification error (see Eq. (11)) of the presented algo-
rithms is estimated for each dataset. Moreover, the results of some other classifiers based on Bayesian networks (multino-
mial and Gaussian NB and TAN), k-nearest neighbour with k ¼ f1;3g, ID3 and C4.5 classification trees, quadratic
discriminant analysis and multilayer perceptron are presented. Then, based on these results, flexible classifiers and the
benchmarks included are compared across the UCI datasets by means of Friedman plus Nemenyi post hoc tests, as proposed
in [19]. Additionally, in Section 5.2.3 the effect of the smoothing degree in classification performance is analyzed. Finally, in
Section 5.2.4, and in order to study the nature of the error of the flexible classifiers, Kohavi and Wolpert’s bias plus variance
decomposition of the expected error [46] is performed in some of the UCI datasets included.
5.2.1. Main features and preprocessing
The results have been obtained in 21 UCI repository datasets [59], which only contain continuous predictor variables with-

out missing values. Taking into account that BMN, CGN and KBN based classifiers handle discrete variables assuming that
they are sampled from a multinomial distribution, we have decided to include only continuous domains to highlight the dif-
ferences between each other. We have also decided to include only continuous domains because the most complex models,
such as fCG, are prohibitive for mixed domains with many discrete variables. The main characteristics of the datasets in-
cluded are summarized in Table 2.

In order to interpret the results we must take into account that most datasets of the UCI repository are already prepro-
cessed [43]: in the datasets included, there are few irrelevant or redundant variables, and little noise [79]. It is more difficult
to obtain statistically significant differences between the results of the algorithms in these types of datasets [79].

Some of the included datasets have a high-dimensional feature space (see Table 2). We have decided to reduce their
dimensionality by a preprocess stage to avoid the computational problems related with the flexible classifiers presented
(especially for computing the conditioned mutual information among each pair of predictors, IðXi; XjjCÞ).

The preprocess stage is performed for each training-test pair separately. In order to estimate the error (Sections 5.2.2 and
5.2.3) at each data set, 10 training-test pairs are generated using 10-fold cross validation procedure. In the bias plus variance
decomposition (Section 5.2.4), 10 training-test pairs are generated ðN ¼ 10Þ. Firstly, in order to reduce the computational
requirements of the algorithms proposed (especially for fTAN and fkDB) we have performed a feature subset selection. If
the number of predictors d is greater than 50, the dimensionality is reduced to 50 predictor variables. With this purpose,
the mutual information with the class, IðXi; CÞ, is computed for each variable, Xi, using the training set. Then, variables
are sorted in descendant order of IðXi; CÞ and the first 50 variables are selected. So as to perform the experimentation with



Table 2
Main characteristics of the datasets: the number of different values of the class variable ðrÞ, the number of predictor variables ðdÞ, and the number of instances
ðnÞ

Label r d n Name of the dataset

Balance 3 4 625 Balance scale weight and distance
Block 5 10 5474 Page Block’s classification
Haberman 2 3 307 Haberman’s survival
Image 7 18 2310 Image segmentation
Ionosphere 2 34 351 Johns Hopkins University Ionosphere
Iris 3 4 150 Iris plant
Letter 26 16 20,000 Letter image recognition
Liver 2 6 345 Bupa liver disorders
MFeatures 10 649 2000 Multiple feature digit
Musk 2 166 6598 Musk Clean2
Pendigits 10 16 10,992 Pen-digit recognition of handwritten digits
Pima 2 8 768 Pima Indians diabetes
Satellite 6 36 6435 Landsat satellite
Sonar 2 60 208 Sonar, mines vs. rocks
Spambase 2 57 4601 Spam e-mail database attributes
Thyroid 3 5 215 Thyroid disease records
Vehicle 4 19 846 Vehicle Silhouetes
Vowel 11 10 990 Vowel recognition
Waveform 3 21 5000 Waveform data generation
Wine 3 13 179 Wine recognition
Yeast 10 9 1484 Yeast
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the discrete classifiers, training and testing sets are discretized with the Fayyad and Irani entropy based method [27], using
the discretization policy learned in the training set.

5.2.2. Classification error estimation
The classification error has been estimated for the following flexible classifiers: flexible NB (fNB), flexible TAN (fTAN),

flexible kDB for k ¼ 2; d=2 (f2DB, fd.5DB) and flexible complete graph (fCG).
The benchmark classifiers selected are: Gaussian NB and TAN [62] (gNB and gTAN), multinomial NB and TAN [30] (mNB

and mTAN), k-nearest neighbour with k ¼ 1;3 [16] (k-NN) as lazy classifiers, ID3 [66] and C4.5 [67] as classification trees, and
quadratic discriminant analysis (QDA) and multilayer perceptron (MP) [72] as discriminant functions. All of them, except
gTAN [62] and mTAN [30], are implemented in Weka 3.4.3 [81].
Table 3
The estimated errors obtained with a set of well known state-of-the-art algorithms

Dataset k-NN Classification trees Discriminant func. CGN BMN

1-NN 3-NN ID3 C4.5 QDA MP gNB gTAN mNB mTAN

Balance 14:9
 3:8 14:7
 3:8 29:8
 4:6 23:0
 4:7 8.3 ±2.8 9:0
 1:9 9:3
 1:0 11:5
 1:8 27:7
 4:8 28:2
 4:3
Block 3:8
 0:8 3:8
 0:8 3:9
 0:5 3.1 ±0.5 6:2
 0:7 3:8
 0:7 10:1
 2:4 7:5
 0:8 6:6
 1:4 4:4
 0:5
Haberman 33:3
 3:8 32:0
 3:8 27:8
 3:8 28:4
 7:7 24:8
 4:3 26:5
 4:3 25:8
 4:9 24.5 ±4.6 27:8
 3:8 27:8
 3:8
Image 3.1 ±1.1 4:0
 1:2 7:5
 2:1 4:0
 1:5 19:6
 22:1 4:0
 1:3 21:1
 2:0 20:5
 8:5 11:3
 2:0 5:9
 1:7
Ionosphere 13:1
 4:5 14:8
 3:3 10:0
 6:2 11:7
 5:0 13:4
 4:3 11:4
 6:4 18:0
 6:3 7.7 ±3.6 10:5
 4:0 8:6
 4:1
Iris 4:7
 6:7 5:3
 7:2 6:0
 8:1 7:3
 8:1 2.7 ±4.4 3:3
 6:1 4:0
 6:8 3:3
 6:1 8:0
 7:8 7:3
 8:1
Letter 3.9 ±0.5 4:4
 0:5 20:9
 0:6 12:1
 0:6 11:5
 0:7 17:4
 1:2 35:9
 1:4 28:3
 1:1 26:0
 1:2 14:5
 0:4

Liver 39:1
 4:6 37:9
 6:2 41:4
 2:9 33:3
 6:7 39:7
 5:7 32.2 ±7.1 43:7
 7:8 39:7
 5:6 41:4
 2:9 41:4
 2:9
MFeatures 20:1
 1:7 18:1
 1:4 31:7
 2:0 23:6
 3:9 18:2
 2:3 16.9 ±2.5 23:3
 2:7 19:7
 1:6 22:6
 2:5 20:7
 3:0
Musk 4:7
 0:9 3:9
 0:7 6:6
 1:3 4:1
 0:7 13:7
 1:2 2.6 ±0.6 20:1
 1:8 23:8
 1:4 8:8
 1:1 6:0
 1:2
Pendigit 0.7 ±0.3 0.7 ±0.2 13:0
 1:3 3:7
 0:4 2:2
 0:5 6:2
 0:5 15:0
 1:1 7:3
 1:2 12:9
 0:9 4:5
 0:5
Pima 29:3
 4:0 27:2
 4:8 27:0
 5:4 24:9
 4:8 25:6
 3:7 25:0
 3:6 25:0
 3:3 24:6
 3:6 23:7
 3:7 23.0 ±3.3
Satellite 9:6
 0:9 9.4 ±1.1 18:9
 1:4 13:1
 1:4 14:4
 0:8 10:4
 1:0 20:5
 0:9 14:5
 1:6 17:9
 1:1 11:6
 1:4
Sonar 13.0 ±4.8 16:4
 6:9 23:6
 7:3 26:0
 9:0 23:5
 6:7 13:9
 6:8 31:7
 7:0 31:7
 9:7 22:5
 9:2 22:5
 11:2

Spambase 8:9
 1:4 9:8
 1:4 9:5
 1:3 7.1 ±1.5 19:3
 6:9 7:9
 1:3 18:0
 1:5 17:2
 1:5 10:3
 0:9 7:2
 0:8
Thyroid 3:3
 3:7 5:6
 5:4 8:4
 4:6 6:9
 4:6 3.2 ±4.6 3:3
 3:0 4:2
 4:3 3.2 ±4.6 5:0
 5:2 5:0
 5:5
Vehicle 30:4
 3:4 29:2
 2:5 32:7
 3:1 30:2
 4:5 40:2
 3:1 40:5
 4:7 54:3
 4:7 23:3
 4:0 30:6
 3:1 20.0 ±5.3
Vowel 0.9 ±0.8 3:1
 1:8 22:7
 4:6 20:4
 4:0 11:3
 3:0 20:5
 4:7 32:6
 2:9 22:7
 3:6 35:5
 4:4 28:1
 4:0
Waveform 22:5
 2:2 19:5
 1:5 30:3
 2:3 22:8
 2:0 15.1 ±1.8 15:5
 1:7 19:0
 0:7 17:6
 2:1 18:8
 0:8 18:0
 2:6
Wine 5:7
 4:4 4:0
 4:5 6:2
 6:9 6:1
 5:2 0.6 ±1.7 2:8
 4:5 2:8
 3:8 0.6 ±1.8 1:7
 2:6 4:5
 4:9
Yeast 48:1
 3:8 47:2
 3:0 43:5
 4:4 44:1
 3:7 42:9
 3:8 40.6 ±3.0 42:3
 5:0 42:9
 4:8 43:7
 4:0 43:2
 4:1

Average 14.9 14.8 20.1 16.9 17.0 14.9 22.7 18.7 19.7 16.8

The best results, in each dataset, are marked in bold.



Table 4
The estimated errors and their corresponding standard deviations obtained with the presented flexible classifiers: flexible naive Bayes (fNB), flexible tree-
augmented naive Bayes (fTAN), flexible k-dependence Bayesian classifier with k ¼ 2; d=2 (f2DB, fd.5DB) and flexible complete graph classifier (fCG)

Dataset fNB fTAN f2DB fd.5DB fCG

Balance 8:3
 1:2 10:7
 1:9 12:8
 2:6 12:8
 9:9 1.2 ±0.7
Block 6:1
 0:6 5.2 ±0.7 5:8
 0:9 6:3
 0:7 6:2
 0:7
Haberman 25:5
 5:9 24.8 ±4.3 26:4
 4:7 24.8 ±4.3 26:4
 4:7
Image 18:7
 1:4 15.7 ±1.6 16:5
 1:4 18:4
 1:6 17:1
 1:7
Ionosphere 9:1
 4:6 7.1 ±2.6 7.1 ±3.2 10:0
 4:5 10:5
 5:0
Iris 4:0
 6:8 4:7
 6:7 4:7
 6:7 4:7
 6:7 3.3 ±6.1
Letter 28:7
 1:2 15:7
 0:5 11:4
 0:7 7:7
 0:8 7.1 ±0.8

Liver 33.6 ±7.9 37:4
 8:4 37:4
 8:3 38:2
 6:7 40:8
 6:6
MFourier 22:5
 3:4 18.5 ±2.2 23:1
 2:6 18:6
 2:3 19:0
 2:3
Musk 13.4 ±1.7 10:7
 1:6 18:3
 1:8 41:5
 1:7 40:0
 1:5
Pendigit 14:1
 1:0 4:3
 0:4 3.1 ±0.5 3.1 ±0.4 3.1 ±0.3
Pima 24:3
 4:3 23.1 ±4.3 25:4
 3:3 24:9
 4:7 25:8
 3:8
Satellite 18:3
 0:9 12.0 ±0.9 12:2
 0:7 12:6
 0:6 12:2
 0:8
Sonar 26:9
 8:1 19:7
 5:5 24:5
 7:1 15.4 ±5.5 16:8
 7:7

Spambase 22:8
 1:4 20.3 ±1.6 25:1
 2:6 21:6
 1:9 20:9
 1:8
Thyroid 3.2 ±4.6 4:2
 5:6 4:2
 5:6 4:2
 5:6 4:2
 5:6
Vehicle 29:7
 3:4 31.1 ±3.6 33:6
 2:9 34:6
 3:8 35:6
 3:4
Vowel 26:0
 4:1 10:6
 3:9 5:1
 2:7 1.9 ±1.0 1.9 ±1.5
Waveform 19:3
 0:7 18.4 ±1.7 19:6
 1:8 22:3
 1:9 20:5
 2:0
Wine 2:3
 3:7 1.1 ±2.3 1.1 ±2.3 1:7
 2:6 1:7
 2:5
Yeast 40.8 ±3.9 41:0
 3:9 42:2
 3:1 42:5
 3:6 43:9
 3:4

Average 18.9 16.0 17.1 17.5 17.5

The best results, in each dataset, are marked in bold.
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In order to estimate the classification error, for each flexible classifier and benchmark, at each dataset, a stratified 10-fold
cross-validation process has been performed. Stratified cross-validation obtains estimations with less variance [21,42,81].
The validation was performed in a paired way: the classifiers are trained and tested in the same train-test pairs. The esti-
mated classification errors of the benchmarks and the flexible classifiers are summarized in Tables 3 and 4, respectively.

Using estimated errors in Tables 3 and 4, we compare the behavior of the flexible classifiers by means of the Friedman plus
Nemenyi post hoc test, as proposed by Demšar in [19]. The Friedman test is a non-parametric equivalent of the repeated-mea-
sures ANOVA. It is used for comparing more than two algorithms over multiple datasets at the same time, based on average
ranks. The null hypothesis being tested is that all classifiers obtain the same error. If the null hypothesis is rejected, it can be
concluded that there are statistically significant differences between the classifiers, and then, the Nemenyi post hoc test is
performed for comparing all classifiers with each other. It is equivalent to the Tukey test for ANOVA. The results for the Nem-
enyi post hoc test are shown in the critical difference diagrams [19]. These plots show the mean ranks of each model across all
the domains in a numbered line. If there are not statistically significant differences between two classifiers, they are con-
nected in the diagram by a straight line. For example, in Fig. 7c at a ¼ 0:1 level fTAN is significantly better than fCG. On
the other hand, at a ¼ 0:05 the differences are not significant. A set of classifiers conform a cluster when they are connected
in the diagram with the same line. Two clusters are significantly different (disjoint) when they are not connected.

Each test has been done at two significance levels a ¼ f0:1;0:05g as Demšar suggests in [19]. The studies proposed are:

� Comparing the benchmarks and the flexible classifiers.
� Comparing the families of multinomial, Gaussian and flexible classifiers by means of the mNB, mTAN, gNB, gTAN, fNB

and fTAN.
� Comparing the family of the flexible classifiers proposed.

The Friedman test for all the classifiers (benchmarks and flexible classifiers) rejects the null hypothesis at a ¼ 0:05. Thus,
their errors can not be considered equivalent. The results for the Nemenyi post hoc test and the average ranks are shown in
the critical difference diagrams [19] in Fig. 7a. The analysis is quite similar at a ¼ f0:1;0:05g. No disjoint cluster of algorithms
is obtained, but the good average rank obtained by fTAN classifier and MP, and the competitive results of the flexible clas-
sifiers should be highlighted.

The comparison between the three BN based paradigms (the CMN, CGN and KBN paradigms) using mNB, mTAN, gNB,
gTAN, fNB and fTAN classifiers seems to show two types of behaviors: NB and TAN classifiers. The Friedman test rejects
the null hypothesis at a ¼ f0:1;0:05g. The results for the Nemenyi test and the average ranks are shown in Fig. 7b. The anal-
yses are similar at a ¼ f0:1;0:05g. The different behavior of NB and TAN classifier families, especially at a ¼ 0:1, should be
noted. Flexible classifiers, at each complexity level, seem to perform better than Gaussian and multinomial classifiers in
terms of the average rank. However, the differences are not statistically significant using the Nemenyi test at a ¼ 0:1. It
should be noted that using the Wilcoxon test, which has a larger discriminative power than Nemenyi test [19], the fTAN
shows lower error levels than the mNB, mTAN, gNB, gTAN and fNB classifiers at a ¼ 0:05.



Fig. 7. Critical difference diagrams [19] representing Nemenyi post hoc test and average ranks for different sets of classifiers. The test has been performed at
a ¼ f0:1;0:05g significance levels as Demšar suggests [19].
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The last comparison has been performed between the flexible classifiers proposed. The Friedman test finds statistically sig-
nificant differences in the overall behavior at a ¼ f0:1;0:05g. The results of the Nemenyi test and the average ranks are shown
in Fig. 7c. The fNB classifier seems to show the worst behavior, and fTAN the best one. The fTAN classifier obtains significant
better errors than fNB at a ¼ 0:05 (see Fig. 7c). Moreover, fTAN obtains the highest number of best results across all datasets
(see Table 4). The curse of dimensionality of the kernel density estimation [26,75,77] could explain the decrease of the perfor-
mance of flexible classifiers while the structural complexity increases, such as from fTAN to fCG (see Table 4 and Fig. 7c).

5.2.3. Smoothing degree
This section illustrates the effect of the smoothing degree in the flexible classifiers by means of 21 UCI databases (see

Table 2). The error estimation is performed in the same way as the experimentation of Section 5.2.2. In order to study
the effect of the smoothing degree we have scaled the bandwidth matrix, which has been obtained with the normal rule plus
differential scaled approach, using the following 15 coefficients f1:6�7; . . . ;1:67g. Note that this scaling process can be under-
stood as a wrapper optimization of the smoothing parameter, h.

Fig. 8 summarizes the main results of this section. For simplicity, as fTAN and fNB are representative of the flexible clas-
sifiers presented, we only include the results for them.

In the worst case (see Fig. 8b), the differences between the error obtained with the normal rule plus differential scaled ap-
proach and the best smoothing degree are 8.6% and 9.0% for fNB and fTAN, respectively. This result suggests that, when the
optimization of the smoothing degree is performed in a wrapper way, the performance of the flexible classifiers can be con-
siderably improved in some domains (see Fig. 8b). In spite of this, on average, the difference with respect to the best smooth-
ing degree is only 0.7% for both fNB and fTAN (see Fig. 8a). Besides, on average, the flexible classifiers obtain good results with
the scaling coefficient in ½1:6�6; . . . ;1:61�. Therefore, it can be concluded that the normal rule plus differential scaled approach
usually obtains good approximations for classifying. Coupled with this, we think that using a more robust spread measure
than standard deviation the flexible classifiers could obtain better results in some problematic domains, such as Image.



Fig. 8. The graphs show the classification errors obtained by fNB and fTAN classifiers. They illustrate the effect of the smoothing degree in the performance
of the flexible classifiers. (a) Shows the average estimated errors obtained using 21 datasets (see Fig. 2); (b) shows the estimated errors obtained in Image
dataset. The vertical dashed line indicates the normal rule plus differential scaled smoothing option.
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5.2.4. Bias plus variance decomposition of the expected error
In this section, we perform the bias plus variance decomposition in order to study, in each dataset, the behavior of the

expected error (expected misclassification rate [46]) of the flexible classifiers presented. We define the expected error of
zero-one-loss function as:
EM ¼
Z

f ðxÞ
Xr

c¼1

pðcjxÞð1� pMðcjxÞÞdx ð13Þ
where pMð�Þ is the estimation modeled by a classifier and pð�Þ is the true distribution of the domain. The bias-variance decom-
position of the expected error can be useful to explain the behaviors of different algorithms [79]. The concept of bias-vari-
ance decomposition was introduced to machine learning for mean squared error by German et al. [33]. Later versions for
zero-one-loss functions were given by Friedman [29], Kohavi and Wolpert [46], Domingos [22] and James [39]. The bias-var-
iance decomposition of the expected error proposed in [46] is as follows:
EM ¼
Z

f ðxÞðr2
x þ bias2

x þ varxÞdx ð14Þ
where x is an instance of the test set, r2
x is the ‘‘intrinsic” target noise, bias2

x is the square bias and varx is the variance asso-
ciated with instance x. Each term in Eq. (14) is defined as:
r2
x ¼

1
2

1�
Xr

c¼1

pðcjxÞ2
 !

bias2
x ¼

1
2

Xr

c¼1

ðpðcjxÞ � pMðcjxÞÞ
2

varx ¼
1
2

1�
Xr

c¼1

pMðcjxÞ
2

 !
ð15Þ
The averaged squared bias (or bias term of the decomposition) is defined as bias2 ¼
R

f ðxÞbias2
xdx, and the averaged variance

(or variance term) is defined as var ¼
R

f ðxÞvarxdx. The target noise is related with the expected error of the Bayes classifier.
Therefore, it is independent of the learning algorithm and it is characteristic of each domain. In practice, if there are two in-
stances in the test set with the same configuration for the predictors and a different value for the class, the estimated ‘‘intrin-
sic” noise is positive, otherwise it is zero [46]. Thus, it is considered zero given the datasets selected, and therefore, the
expected error of the datasets included will decompose into bias plus variance. The bias component can be seen as the error
due to the incorrect fitness of the hypothesis density function (modeled by the classifier) to the target density function (the
real density underlying the data). By contrast, the variance component measures the variability of the hypothesis function,
which is independent of the target density function. It can be seen as the expected error of the learning algorithm due to its
sensitivity to changes in the training set. From these concepts, we can hypothesize that bias and variance terms become low-
er and higher, respectively, as the number of parameters needed to model the classifier grows (as classifier complexity
increases).

The decompositions have been performed following Kohavi and Wolpert’s proposal [46] with parameters N ¼ 10 and
m ¼ n=3, where N is the number of training sets, m is their size and n is the size of the original dataset (see Table 2). We
have set N ¼ 10 because the bias estimation is precise enough for this value (see Fig. 1 of [46]), and because of its acceptable
computational cost. We have set m ¼ n=3 to ensure a minimum training set size which could avoid overfitting problems.
Kohavi and Wolpert [46] choose a set of databases with at least 500 instances in order to ensure accurate estimates of
the error. In order to obtain more robust conclusions, we have fulfilled this constraint and the following datasets have been
selected for the experimentation: Block, Image, Letter, MFeatures, Musk, Pima, Satellite, Vehicle, Vowel, Waveform
and Yeast (see Table 2).
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Following the experimentation proposed by Kohavi and Wolpert [46], the probability distributions pðcjxÞ and pMðcjxÞ are
determined as follows:
Table 5
Bias plu

Dataset

Balanc

Block

Image

Letter

MFeatu

Musk

Pendig

Pima

Satell

Spamba

Vehicl

Vowel

Wavefo

Yeast

Average

Fig. 9.
structu
over th
pðcjxÞ ¼
1 ðc; xÞ 2 T

0 otherwise

	
pMðcjxÞ ¼

1
N

XN

i¼1

pMðcjx;diÞ
where T is the test set which is common for all training sets, and pMðcjx; diÞ is the probability distribution learned from di

training set. It must be noted that the estimation of pðcjxÞ assumes that the ‘‘intrinsic” noise is zero.
Table 5 shows the results of the decomposition obtained for each classifier in the selected datasets –at least 500 instances.

It also includes an additional row which contains the averages for each classifier across all the datasets selected. For example
fTAN obtains a bias2 ¼ 11:6 plus var ¼ 18:1 decomposition for Balance, and an average decomposition across all the data-
sets of bias2 ¼ 13:3 plus var ¼ 9:4. Taking into account the results of Table 5, the following four behaviors of the decompo-
sitions should be highlighted (see Fig. 9):

� The behavior of the decomposition with Vehicle dataset (and in a similar way for Waveform and Satellite) is as
follows (see Fig. 9a):
– Bias notably decreases in the jump from fNB to fTAN. On the other hand, fTAN, f2DB, fd.5DB and fCG obtain quite sim-

ilar bias component values.
– Variance slightly increases with the increase of the complexity.
s variance decomposition of the expected misclassification error rate

fNB fTAN f2DB fd.5DB fCG

e 13:3þ 20:3 11:6þ 18:1 10:8þ 16:3 10:8þ 16:3 9:8þ 14:7
3:5þ 1:3 3:2þ 1:3 3:4þ 1:3 3:6þ 1:2 3:7þ 1:2
15:8þ 3:1 14:1þ 2:4 14:3þ 3:0 14:9þ 3:7 14:6þ 3:5
20:5þ 13:4 12:1þ 10:2 8:4þ 9:6 5:7þ 8:5 5:6þ 8:3

res 15:6þ 6:5 11:7þ 6:9 11:5þ 7:5 10:9þ 6:9 11:3þ 6:5
12:3þ 1:4 9:8þ 3:6 14:8þ 6:6 28:8þ 6:9 27:6þ 6:5

its 11:7þ 3:0 4:0þ 1:6 2:7þ 1:1 2:5þ 1:0 2:7þ 1:0
16:6þ 11:5 16:4þ 12:6 16:4þ 12:9 16:6þ 12:3 17:3þ 12:0

ite 17:3þ 1:3 9:1þ 3:1 8:4þ 4:7 8:3þ 4:8 8:1þ 4:6
se 19:1þ 2:8 19:0þ 2:8 19:0þ 2:8 19:0þ 2:8 19:0þ 2:8
e 29:3þ 13:5 20:6þ 14:6 20:3þ 15:5 21:0þ 17:0 21:2þ 16:8

21:1þ 24:7 11:1þ 17:5 8:9þ 14:7 7:2þ 12:1 6:9þ 11:7
rm 17:3þ 3:7 12:5þ 9:5 12:4þ 10:4 13:1þ 11:8 13:7þ 10:3

31:1þ 27:2 30:7þ 27:5 31:2þ 27:4 31:2þ 27:1 31:9þ 27:2

17:5þ 9:4 13:3þ 9:4 13:0þ 9:6 13:8þ 9:4 13:8þ 9:1

The graphics represent the evolution of the bias plus variance decomposition of the expected error for different flexible classifiers ordered by their
ral complexity. The graphics include the decompositions for three representative datasets (Vehicle (a), Vowel (b) and Pima (c)) and for the average
e datasets selected (d).
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� The behavior of the decomposition with Vowel dataset (and in a similar way for Balance, Letter and Pendigit) is as
follows (see Fig. 9b):
– Bias decreases with the increase of the complexity.
– Variance also decreases with the increase of the complexity.

� The behavior of the decomposition with Pima dataset (and in a similar way for Block, Image, Spambase and Yeast) is

as follows (see Fig. 9c):
– Bias and variance terms remains almost constant for all the flexible classifiers.

� Taking into account Balance, Block, Image, Letter, MFeatures, Musk, Pendigits, Pima, Satellite, Spambase,
Vehicle, Vowel, Waveform and Yeast datasets, on average, the behavior of the decomposition is as follows (see
Fig. 9d):
– Bias notably decreases in the jump from fNB to fTAN. On the other hand, fTAN, f2DB, fd.5DB and fCG obtain quite sim-

ilar bias components of the error. Therefore, it can be concluded that for the selected datasets fTAN model is precise
enough for estimating the underlying density of the data.

– Variance remains almost constant with the increase of the complexity, and thus, all the models seem to have a similar
sensibility to changes in the training set.
In Musk dataset the bias component of the fNB is clearly lower than fd.5DB and fCG. The mutual information between
predictors conditioned on the class reveals that some predictor variables are independent with respect to each other. Thus,
the compulsory addition of arcs could be the reason for the increment of the bias term.

In order to understand the behavior of the variance term, the following two observations should be taken into account:

� The number of parameters (see Section 4.5) among the flexible classifiers presented is quite similar, and it is almost
independent from their structural complexity (see Table 1 with k ¼ 0 for fNB and k ¼ d� 1 for fCG). Thus, from the para-
metric learning point of view, the sensibility to the changes in the training set (variance term) should be quite similar
among flexible classifiers.
� We have observed in our experiments that given a factorization of the probability function qðc; xÞ, the probability mass

tends to be more spread as fewer dependencies between variables are considered. For example, fNB tends to model a
probability function more spread than fCG. Therefore, the classifiers, which model more dependencies between vari-
ables, tend to model an a posteriori distribution pðcjxÞ with values nearest to 0 or 1 (degenerated distributions). If an
instance xðiÞ has a distribution more degenerated than another instance xðjÞ, then its variance should be lower,
varxðiÞ < varxðjÞ (see Eq. (15)).

The first observation explains the similar variance values for fNB, fTAN, fkDB and fCG classifiers in Block, Image, Vehi-
cle, MFeatures, Pima, Satimage and Spambase. The first and the second observations could explain the slight decrease of
the variance term as the structural complexity increases in Vowel, Letter and Pendigits.

Generally, among flexible classifiers, those which model correlations between predictor variables seem to be more suit-
able for modeling the underlying true densities of the variables, keeping at the same time the error due to the variance al-
most constant. Therefore, in absence of prior knowledge about the true density underlying the data, it may be advisable to
use flexible classifiers which model correlations between predictors.
6. Conclusions and future work

This work presents the novel kernel based Bayesian network (KBN) paradigm for supervised classification. A kernel based
Bayesian network is a Bayesian network which estimates the density of the continuous variables using kernel based estima-
tors (Eq. (4)). Following the nomenclature introduced by John and Langley [41], we use the term flexible classifiers to name
the family of classifiers based on KBN.

The KBN paradigm can be considered as an alternative to Bayesian multinomial networks because they can directly
handle continuous variables without needing to discretize them. In addition, it can also be considered as an extension of
the conditional Gaussian network from the point of view of the flexibility of their approaches for estimating densities,
because kernel based Bayesian network uses a non-parametric kernel based density estimation instead of a parametric
Gaussian one. In this paper we have demonstrated the strong consistency property of a flexible classifier for estimating
pðcjxÞ when its structure captures the true conditional dependencies between variables. Moreover, the kernel based esti-
mation confers better flexibility properties than Gaussian approach in order to fit non-Gaussian densities. In summary,
the factorizations codified by a KBN are better approximations to the true joint density and, therefore, the flexible clas-
sifiers obtain error rates closer to the Bayes error. This idea is illustrated in Section 5.1 by means of a set of four artificial
domains. In the UCI datasets included, flexible classifiers seems to classify better than their Gaussian approaches and at
least equal to their multinomial versions. Besides, they obtain competitive results compared to the state-of-the-art algo-
rithms selected.
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Among the flexible classifiers proposed, the novel flexible tree-augmented naive Bayes obtains the best ranking average and
estimated errors. Besides, taking into account the bias plus variance decomposition of the expected error, it seems to model
the true densities much better than the flexible naive Bayes, and thus, the error due to the bias component is lower. On the
other hand, flexible classifiers which model the correlation between predictors obtain quite similar bias components of the
error. Moreover, the error due to the variance remains almost constant among flexible classifiers and, therefore, all the mod-
els seem to have a similar sensibility to changes in the training set. In summary, among the flexible classifiers presented, in
absence of prior knowledge about the true density underlaying the data, it is generally advisable to use the novel flexible
tree-augmented naive Bayes for classifying.

One of the most important disadvantages of the kernel density estimation is related with the computational cost that is
required to evaluate an instance. Our main future work line consists of relaxing the strong computational cost required. We
have considered to approximate the kernel based estimation by means of semi-parametric approaches, such as, mixture of
truncated exponentials [58,69], spline approximation [36,37] or Gaussian mixture models [55]. The Gaussian mixture mod-
els can be learned by means of the following approaches: EM algorithm [3,55], projection pursuit algorithm [1,2], iterative
pairwise replacement algorithm [76] or M-Kernel merging procedure [83]. These semi-parametric approaches considerably
reduce the computational cost, from a cost related with the number of training cases to a fixed one. These approaches will
allow us to design and implement other search techniques in the space of possible structures: wrapper search [44] guided by
the accuracy, or by using metaheuristics such as genetic algorithms [34] or estimation of distribution algorithms [49].
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