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Abstract

This paper presents a theoretical study of the behaviour of the univariate marginal
distribution algorithm for continuous domains (UMDA.) in dimension n. To this end,
the algorithm with tournament selection is modelled mathematically, assuming an in-
finite number of tournaments.

The mathematical model is then used to study the algorithm’s behaviour in the
minimization of linear functions L(x) = ag + »_;_, axx; and quadratic function Q(x) =
S a2, with x = (xy,...,x,) € R"and @; € R, i =0, 1,...,n. Linear functions are used
to model the algorithm when far from the optimum, while quadratic function is used to
analyze the algorithm when near the optimum.

The analysis shows that the algorithm performs poorly in the linear function
Li(x) = >_7_, x;. In the case of quadratic function Q(x) the algorithm’s behaviour was
analyzed for certain particular dimensions. After taking into account some simplifica-
tions we can conclude that when the algorithm starts near the optimum, UMDA is able
to reach it. Moreover the speed of convergence to the optimum decreases as the di-
mension increases.
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1. Introduction

Estimation of distribution algorithms (EDAs) are a new and promising
paradigm for evolutionary computation [11,15]. EDAs emerge as a general-
ization of genetic algorithms (GAs), for the purpose of overcoming the two
main problems: poor performance in certain deceptive problems and the dif-
ficulty of mathematically modelling a huge number of algorithm variants.

Introduced by Miihlenbein and Paal3 [15], EDAs constitute an example of
stochastic heuristics based on populations of individuals, each of which en-
codes a possible solution of the optimization problem. These populations
evolve in successive generations as the search progresses, organized in the same
way as most evolutionary computation heuristics. In contrast to GAs, which
consider the crossover and mutation operators as essential tools to generate
new populations, EDAs replace those operators by estimating and sampling
the joint probability distribution of the selected individuals.

However, the bottleneck of this new heuristic lies in estimating the joint
probability distribution associated with the database containing the selected
individuals. To avoid this problem, several authors have proposed different
algorithms where simplified assumptions concerning the conditional depen-
dencies between the variables of the joint probability distribution are made. A
review of the different approaches in the combinatorial and numerical fields
can be found in [8-10,16].

During recent years much effort has been devoted to creating new EDAs and
EDA applications. However this development has not been accompanied by
mathematical analysis. There are very few works devoted to a mathematical
modelling of EDAs in the literature.

Reviewing the literature, we can distinguish between papers that analyze
EDAs in discrete domains and those that consider continuous domains.

In discrete domains the most general results are given by Gonzalez et al. [5]
and by Miihlenbein et al. [14]. In the first paper the authors not only unify most
of the theoretical results found in the discrete EDA literature, but present a
new general convergence theorem for these algorithms. In the second paper
an EDA that uses Boltzmann selection is introduced: Boltzmann estimation of
distribution algorithm (BEDA). Furthermore the convergence for infinite
populations of a general BEDA is shown.

There are other works that analyze particular instances of discrete EDAs. In
[13], it is shown that univariate marginal distribution algorithm (UMDA) with
infinite population and proportional selection can only reach local optima.
In addition, there are papers that analyze the population based incremental
learning (PBIL) algorithm. Hohfeld and Rudolph [7] study the behaviour of
PBIL in linear functions. Gonzalez et al. [6] model this algorithm by means of
Markov chains to show that the convergence of PBIL, applied to the OneMax
function in two dimensions, has a strong dependence on the initial parameters.
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In [4], the authors associate a discrete dynamical system with PBIL, and
demonstrate that the algorithm follows the iterates of that discrete dynamical
system, concluding that all the points of the search space are fixed points of the
dynamical system, and that the local optimum points coincide with the stable
fixed points. Berny [2] shows that the PBIL algorithm can be derived from a
gradient dynamical system. Furthermore he carries out a stability analysis of
the cited system, showing that PBIL can only converge to local solutions.

Finally we mention papers devoted to a mathematical analysis of EDAs in
continuous domains. In [1] the population based incremental learning algo-
rithm for continuous domains (PBIL,) is examined, carrying out an analysis
for real continuous functions similar to the analysis made in [2]. However, in
this case the author does not offer stability results. In [17] the factorized
distribution algorithm is theoretically analyzed and convergence results are
given.

The purpose of this paper is to contribute a mathematical analysis of a
continuous EDA, the UMDA.. The UMDA is the simplest version of EDAs.
The discrete version was introduced by Miihlenbein [12], while the first con-
tinuous version was given by Larranaga et al. [8,10]. This algorithm does not
take into account dependencies among the variables, therefore it is assumed
that the n-dimensional joint probability density factorizes as a product of n
independent univariate marginal densities.

It was of particular interest to see how the UMDA, algorithm with tour-
nament selection performs. To this end we mathematically modelled the ap-
plication of this algorithm to the minimization of two kinds of functions. First
n-dimensional linear functions were used to model the algorithm when far from
the optimum. Next quadratic function was used to analyze the algorithm when
near the optimum.

The remainder of this paper is organized as follows: Section 2 introduces in
detail UMDA_ with tournament selection. Section 3 is devoted to the mathe-
matical modelling of the algorithm. Section 4 analyzes the modelling of linear
functions, while Section 5 analyzes the case of quadratic functions. Finally, we
draw conclusions in Section 6.

2. The UMDA, algorithm with tournament selection

This section describes in detail how the UMDA, algorithm with tournament
selection works.

The algorithm works as follows. At each step 7, an n-dimensional random
variable X’ = (X/,...,X) is maintained. In the literature related to UMDA, it
is usual to assume that the joint probability distribution of X' follows an n-
dimensional normal distribution which is factorized by a product of n unidi-
mensional and independent normal densities. This assumption will be made
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here. Therefore each component of X' is distributed as a unidimensional

normal, that is X/~."(if,0t), where [y uq ()= (1/v2nal)e */2(a)?
with i=1,...,n. In other words f 1)( ) denotes the den51ty functlon
of a unidimensional normal with mean p! and standard deviation ¢} in
point x;.

Drawing the above n-dimensional random variable, two individuals are
obtained, and the better one is selected, i.e. a tournament selection is made.
This process is repeated N times, obtaining the population of selected indi-
viduals, after which this population is used to obtain the means and standard
deviations of the random variable X'*'. These parameters are estimated
by using their corresponding maximum likelihood estimators. In this way the
new unidimensional distributions at step ¢+ 1 are achieved. Fig. 1 shows a
pseudocode for this algorithm for the minimization of function G(x).

Our objective is to learn how the density functions change with time. This
enables us to know how u} and ¢! evolve when ¢ increases.

Obtain randomly the parameters of a normal probability
distribution for each variable
while no convergence do
begin
for (j=1j<N;j++)
begin

Drawing X? obtain 2 individuals:

16 ¢
xﬁj ()55 T1)

1 ,
xh ;= (Tg)5 - ,z;’j)
Evaluate x] ;, x} ;
Select the better one:
thz),j = argminx{G(x'i’j), G(Xg,j)}
end
for t=1;i<m;i++)
begin
Estimate the parameters of the new density functions:

N zht
t+1 __ ZJ 1 (1 2),j
My - N

t+1
t+1 \/E] (= (12>]_"1 ?

en
end

Fig. 1. Pseudocode for UMDA, with tournament selection.
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3. Mathematical modelling

To model the UMDA, algorithm with tournament selection for continuous
optimization problems with n variables, we take a case in which at each step an
infinite number of tournaments is made. The mathematical model will depend
on the function being optimized. At first we try to model the algorithm as
generally as possible, hence we assume that the function to minimize is

G:R"—R. (1)

However, as we will see later, at some point it will be necessary to particularize
the function we are analyzing.

As noted above, we assume that at each step ¢, each variable follows a
unidimensional normal distribution, and has associated the following density
function:

1
S (xi) = farquony (i) =

V2na!

where fx:(x;) denotes the density function of the random variable X. As we are
working with UMDA these variables are independent. Hence at each step ¢ we

e~ (imH)/2() ()

have an n-dimensional random variable X'= (X{,...,X!) following the density
sz (X) with
S ®) = [ v (). (3)
i=1

To simplify notation, each density function associated with each variable X/
will henceforth be denoted by

f;(x,-) = fXI_f(.xi) = f/y”(”:’n—;)(xi), Wlth = 17 27 N (8 (4)
Likewise, its associated distribution function will be denoted by
Fi(x) = / fi(s)ds, withi=1,2,....n. (5)

We use the usual notation not only in the case of the standard normal
density:

1 >
x) = fron(x) = —e /2, 6
d(x) = faron(x) N (6)
but also in the case of its associated distribution function:
o) = [ 4(s)ds. (7)

At each step ¢ the random variable X{, 5 is considered, i.e. the random vari-
able of the better of two variables X'. Thus
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E[sz)] = (E[X<l1;z)<1]v S E[X(ll:2)4n])
Var[XEI:Z)] = (Var[X(tl:Z),lL e 7var[X(tl:2),n])7

after which, the new distributions at time ¢ + 1 are obtained. Hence each X/*!
obeys A (ui*, oi™), with ! = E[X,, ] and o/ = (Var[X(’lzz)ji])l/z.

As we want to model the behaviour of the algorithm, we need to know
explicitly the expressions of /! and ¢/*! given !, ¢!, for i = 1,...,n. Then we
can use these expressions to analyze the sequences {4:}, and {c}, with r € N,
and to study how they evolve when the number of iterates increases. In other
words, we study the limits:

lim 4, (3)
tlirzlC al. 9)

In order to calculate x/*! and ¢'*!, we have to obtain the density function

associated with the best individual of each tournament. We denote this density
functiqn by e (xl., ...,x,). Notice that. the' previous density will depend on G,
the objective function that we are considering.

3.1. Calculation of f/1.2) (xi,... %)

In order to calculate the density function f{), (xi,...,x,) we proceed as
follows. First we obtain its associated distribution function, F{,, (xi,...,x,).
Then we derive this distribution function and obtain the density function
Shoy(xt, - x).

Let X{ = (X{,,...,X],) be the random variable associated with the first
individual obtained in the tournament at step ¢, and X} = (X?,,..., X%, ) the
random variable corresponding to the second individual. Thus, the distribution
function Ff 5 (x1,...,x,) is

F(tlzz)(xla ey Xy) = P((X(tl:z),l’ e 7X(tl:2),n) (X150 e 3 X)) (10)
To make the calculus easier, we express the random variable associated with
the best individual in each tournament as a sum of random variables:
t vt t
X2 = Xi - Liaxy) <oy + Xo - fa>6x)y.» (11)

where the random variable I, denotes the characteristic function of the event 4,
hence

1 ifxed
Lix) = {0 otherwise. (12)
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The event described in (10) is written as the following union of events:

(KXo Xf12) < (x1yeo0x) = {UT N U} ULV NG, (13)
where

Uy ={(X] . X1,) < (1,00x0) )

Ut_{G( 117--~aX1tn) ( 2,19 ~-7X2,,n)}

={(X2’1,..., 1) < (e, x))
={G(X{,,....X{,) > GX3,,....X3,)}.

We denote by U’ the event U] N U} and by V* the event /{ N VJ, and since
{(X(tl:z),h e 7X(r1:2),n) <(xrseex) = {UTU{F}

Hence, given that we have disjoint events, we can state that

Fiy (a1, %) = P(U) + P(V"). (14)

Taking into account that P(U’) = P(V") (G is a continuous function), it is
enough to obtain P(U"). In order to do so we find the conditional probability

Ulx!, =xu,...,X' =x,) and then we integrate over the rest of the
1,1 ; 1n ;
variables:

P(U1|Xll,l =Xy >X117n = xl,n)

_ P(G(XZZ,U""XZt,n) Z G(xl‘l,...,xl,,)) lf xl,lgxl,...,xl,,,éx,,
0 otherwise.

To simplify the notation we write:

P(GX{,....X!) = G(x1,...,x,)) = A(G(x)). (15)
Therefore
P(Ut) = / .. / P(U[‘Xltl =X115--- ’Xlt,n :xl,,,)
Sixnn) - fi(xa)dxg g odxg,

X1,1 X1
/ / GO (o) - Sy (ra) oy doy e
Hence, the distribution function of X{;,, is

F(tlzz)(xlw--vxn) :P((thz X(IZ) )< (X105 X0))

—2/ / ) fi(xa) o (x) dxy L d,.
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Deriving the above expression we obtain the density function as

f(’lzz)(xl,...,x,,) = 2A‘(G(x))ﬁfi‘(x,«). (16)

3.2. Calculation of pi*' and o'

To obtain x/*! and ¢/*' we must first calculate each marginal density

function f{;, ,(x;) withi=1,...,n:

pH = / 5if ) () s, (17)

@ = [ o) - () (13)
The marginal densities can be expressed as follows:

f('ltz)yi(xi) = / . / f(ll:Z) (xl, ce 7.X',,l)d](f] ce dx,-,] dxi+1 e dx”

/x.../OCZA‘(G(x))ﬁfj’(xj)dxl...dx[ldx,-H...dx,,
B 1

= 2] (x)) b (x;), (19)
where
hi(x;) = /fo . ..[%A’(G(x))ﬁfj’(xj)dxl coodx_dxig L dx,. (20)

As can be seen in (19) the calculations of /™! and /™! are closely related to
the objective function G. For this reason, our analysis will now focus on the
following two cases:

e The case of linear functions.
e The case of quadratic functions.

4. Linear functions

We shall start by studying the simplest case, where the function L(x) under
consideration is

L:R"—R

n
X ay + E a;x;.
i=1

This will help us to see how the algorithm performs far from the optimum.

(21)
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4.1. Calculation of ‘'

As the calculations are analogous for each component, they will only be
given for the first component:

L) =17 = [ xiffdn = [ 2afoRedn. @2)

To simplify the notation, in the following calculations the superscript cor-
responding to the step is left out. It is, however, written in the final expression
of @™ and ¢'*!.

First we need to know the value of A(L(x))

A(L(x)) =4 (ao + Zajxj) = P<a0 + Z aX; = ap+ Zajxj), (23)
j=1 J=1 Jj=1

since each X; is a random variable with density function f,, ) (x;), we know
that the random variable 7 = 77 ,X; has density function:

N ilaj,uj, o0
p
Therefore
() = p| Lo Gty 24t~ 1)
2140 S &)
—1_9 > (X — ) o)

Now we can calculate 4 (
1(x1) / () - / Julxr) / So(x2)A(L(x))dx, ... dxy . .. dx,

using the following notation:

gk(xl,xk+1,xk+2, e ,x,,) = lmﬂ(xk) e [mfz(XZ)A(L(X))d)Cz e dxk

with £k = 2,...,n, we know that

hy(x1) = ga(x1). (28)
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We are going to prove by induction on k that
Zf'f;l a;(x; — ;)

gk(xl,xkﬂ,xkﬂ,...,x,,) =1- 'l# """ ~ . (29)
\/Zﬁzz a;o} + 30, a;o}

First this is demonstrated when £ = 2, after which we use as inductive hy-
pothesis case k and demonstrate that (29) is fulfilled in case & + 1.

Before proving Eq. (29), we must first take into account the following results
borrowed from [3], which will help us to make the calculations:

Iy(a,b) = /_DC e’sz/zdi(as—i—b) ds = \/2;¢<\/%_7) (30)
I( b)—/x e (as + b) ds = ———— ex L (31)
1\a,b) = ﬂcs as s = o p > Tra )

Now we verify that (29) is satisfied when k = 2

gZ(xl7x37x47 .. 7xr1)

_ /‘” L gtmpnd (g g Zirati—m) g~ (2
—o0 V210 Yoo ara?

Making the transformation of variable (x, — i)/, = s we find that

& (X1, %3, X4, ..., Xy)
_q_ /0" Le"‘z/Z(p <azo‘zs + axy, + Z';% ax; — > 1, gl.’ui> )
e ven D1 a0}
=1- L /DO es2/2q§< 2028 n Z”;; a;(xi — ;) > ds (33)
Van J o \/m > 4o}

Taking into account the result (30):
< ot L e Thatw
&2\ X1, X3, X4, -+, Xp) = 1 — 0 7 ; 7
2n \/Zizl a;o} \/Zi:l a;o}
Do a(x — 1)
=1-9 7 = . (34)
Vayos + Y01, a0y

By the inductive hypothesis, we assume that (29) is true for k, let us now see
whether it is true for £ + 1:
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gk+l(x17-xk+27xk+37 LR 7xn)

o0
= / St (k1) & (X1 X 15 X2, - - -5 %) Aoy
—o0

o0 Z’.?H va,«(x,- - Ni)
=1 —/ St (i) P = dxeg- (35)

Taking into account the change of variable (x,+1 — p1)/0k1 = s, we find
that

gk+l(x17xk+2;xk+37 s »Xn)

1 Ok1S + 2 o ai(xi — ;)

i#2,.0 41

\/212 aio; + 5 a0}

ds.

<1 >
=1 —/ ——e P
—x V27

By again using the result (30), we find that

Gt (X1, Xpy2, Xkg 3, - -+ 5 Xp)

_ Aj410%+1 Zj;zi" ai(xi — i)

\/2121 :llaa \/21211+211a

Substituting the corresponding value of [ in this point

\/Ekzz 0262+Z”71 242
it (X1, Xpy2, Xpg 3, - ooy %) = 1 — @ i=2 i i=1 % i
1+ k+l A+1
Z‘ zal '+Zz lat 0[‘
n
= 1 — ¢ Z1%2 ..... f+1 [(xi - lul) . (36)

\/Ek+2la‘7 +>n 1‘1:2

So we have proven that (29) is fulfilled, therefore

hl(xl)gn(xl)l(p<\/a al(—ilz_zlul)ao- ) (37)
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Now we can calculate p/™!

t+1

T :[ 2x1f1 (oep )Py (xy) dxy

/002 L emmmrid (1 g G — ) dx,.
—% V2o Vaiar +23 1, dla?

Using the new variable s = (x; — u,)/0;, we obtain

2 o P a|os
== ais+u)e* 11— Ll ds
H V2n /ﬂc( s+ ) Vaiar +237, dlo?

2 o0 2 o0 2

—5°/2 —s°/2
— o se ds + / e ds
V 2n [ 1 /—oo o —

o0

— 0 /OC Se—sz/z(p aos ds
o0 \/a +221 Zal O-z
> en a,o1s
—u / e o] ds|. 38
1 - ( \/a + 2 Zl 2 I o; > ] ( )

Egs. (30) and (31) help us to express the above integrals as follows

t+1

2 ayog
— o -0+ - V2t —o0y - [ 0
1] m[l H 1 l<\/a )

"‘22 22’
a0

— - 0.

" 0( ot +23 1, dla] )]

i=2 a;o;
Using the results (30) and (31):

2 a0 V2n
tl_ Vo —o 101
H /_27'5 |fh 1\/2a G S — I )
2
a, oy
-y — _ 39
SN vl )
Summarizing
ai (")
i = i - ) (40)
V3oL a; (o))

The expression for the expectation in any component 7 is obtained analo-
gously:
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a;(a')?
W= — (o) : (41)

Va3 a (o))

4.2. Calculation of o™

As done before in calculating /™!, we only make the calculations for i = 1,
after which we generalize the result:

(thﬂ) = Var[ (12), il = E[( 12) 1)2} - (E[X(tlle),l])z' (42)
We start by obtaining E[(X{,.,,)’]

B[ )7 = / 221 () (1) dox

e 1 292
— 2 xle~(i—m)/20y
/_DO V2no, :

N ar(x — i)
(1 (D(\/a +2212a161>>dm.

Making the change of variable (x; — y;)/0, = s, we have

E[(X({5)1)’]

2 /OC 2 2/ ajogs

=— o1s + e (1 - ds
\/27'[ —oc( : #1) \/a +221 2alo-t
af/ sPe 2 ds + 201u1/ se™ 2 ds +,u%/ e ds
— 0% /% e 2P Qs ds
~ NCEESy Y
Bads / s ( Vaia? —(:120;: a’a? )ds
> i=2%iYi

, [~ 2 a0,s
—u / e ds|. 43
1 - (\/a10-1+221 2a10-1> ] ( )

ﬁ’l\)
]
1
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Taking into account expressions (30), (31) and
L(a,b) = / s’ *®(as + b) ds
b a*b -1
:\/Zd)( )— ex (——), 44
Vita) Grevize P\ 2 1va) @
the integrals in (43) can be written as follows:

lof V24204 -0+ 1t - V21

oI il 0
2 )
b\ Valel + 230, ala}
a o
‘2"‘““’1(w S na 2’°>

2. o 0]
lul ’ \/Cl +221 Zal Gl

Using (30), (31) and (44) we obtain:

E[(X(tftzl),l)z] = \/%

E[(X(1).)7)
\/ a0 V2n
\/2._[ \/277:—|—,uf\/277:—a1 261#1\/5277:;2?_#% 5
2a; 1,07
:O'2+ 2 1H19 45
RN .

Now the superscripts corresponding to the step are written in order to ob-
tain the full expression:

o2 N2 2a1(0})*
E[(X(1),)7] = (01)" + (1) — =. (46)
Vr Z?:lazz(o_zt‘)
Finally
20 1)\2
ot =d |1 - %. (47)
772;’:1“?(0'5)

An analogous expression for any component i can be given:

2( )2
B PR (/) (48)
ny 1 4;(0))
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4.3. Analyzing the algorithm’s behaviour

Having obtained the expressions of /™! and ¢/™', we now try to predict the
algorithm’s behaviour when ¢ increases. This is done by analyzing each se-
quence of means {x!}, and each sequence of standard deviations {¢!}, with
teN.

To prove that the algorithm performs properly we must show that
when a; > 0=yl — —o00, ast— oo (49)
when ¢; < 0= i — 400, ast— oo,

because if so, the algorithm would improve at each step, minimizing un-
boundedly the value of the objective function.

Unfortunately means sequences {u}, with r € N are difficult to study when
standard deviations ¢’ are not equal in each component. However, we can state
that the improvement at each step and in each component can be written as
follows:

at(U{)Z

1
|-
V2 aj(a))

Hence, given that sequences {o'}, decrease for all i (see Eq. (48), with
a; > 0), the improvement in each component decreases when ¢ increases.

Given the difficulty of analyzing the sequences {4}, and {d}}, with r € N, we
are going to study a particular case, in which the function to optimize is

Li(x) = ixi, (51)

it — ] =

(50)

and the sequence of standard deviations meets the condition:
oi=d, withi=1,... n (52)

First of all we study the sequence of standard deviations {¢'}, with r € N.
Given that

1\
O‘Hl _ J,(nn > ’ (53)

nw

we can write ¢! as a function of ¢°. Therefore, solving the recurrence, the

sequence of standard deviations can be written as follows:

(1+1)/2
g”‘:o-o(nn_l)H) . (54)

nm

The above expression helps us to analyze the means sequence {u'}, with
t € N. After substituting this expression in Eq. (41) we obtain:
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0 (t=1)/2
. 1 O nm — 1
= e — . 55
wo=p %( - ) (55)

We can also express ¢ in terms of y° and ¢%:

t_ 07070 1+ nr — 1 1/2+...+ nm — 1 e
p==a /AT nm nm

which yields

0 nn—1

Mt:ﬂo_ o X ( nmn )t/z_l (56)
VR ()T

This new form of writing x/ makes it easier to analyze the means sequence.
This sequence decreases and has a finite limit.

0 nn—1 t/2
PR o o (=) -1
pm = fim (“ _\/,ﬁ'(m)m_)
o . @ 1 0

o
=pu + =0
K \/nm (M)l/z_] K vnr—1—/nn

nm

(57)

Therefore, although the mean values decrease at each step, this decrease is
not unbounded. This fact implies poor algorithm performance, leading us to
conclude that this algorithm does not work as expected when we are far from
the optimum and the number of tournaments at each step is infinite.

To see how the algorithm performs with a finite number of tournaments, we
carried out a number of experiments. Having chosen the number of tourna-
ments, we ran the algorithm with the linear function:

2
Li(x) = > x, withx = (x1,x,) € R”. (58)

=1
The initial density functions used were
fXIO (x,) =f1(12>(x,), Wlth i= 1,2 (59)

We ran the algorithm 50 times for different number of tournaments (10, 50,
100, 1000, 10,000). After which we calculated the average value of the mean at
each generation. Here we only show the results for the mean values in the first
component (the values for the second are analogous). The results can be seen in
Fig. 2.

The experiments show that a low number of tournaments does not guar-
antee an unbounded decrease in the mean values. In fact, as can be seen in
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Fig. 2. Values of 4 for different numbers of tournaments.

Fig. 2, the mean values block for a low number of generations when the
number of tournaments is small.

The experiment shows that the algorithm performs worse the smaller the
number of tournaments made.

5. Quadratic function

This section deals with our analysis of the case in which the function con-
sidered is

O0:R"—>R
3
=1

This function is used in the literature to study the algorithm’s behaviour
near the optimum.

(60)
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We attempted to make a similar analysis to the one made in the linear case.
However, during the study of this function, problems arose in calculating some
integrals. These problems forced us to make certain simplifications in order
to obtain as much information as possible concerning the algorithm’s behav-
iour.

5.1. Calculation of ™'

As in the previous case we make the calculation for the first component:

= /:” 2x1f1 (x1)hn (x1) dxy. (61)

First we need to know the value of 4(Q(x))

A(O(x)) A(ixj%) = P<i(X,-)2 > ixj). (62)

Since each X; is a random variable with density function f -, 4 (x;), we
know that

a-4(55)
/ (&) e

—n-m)*/207 | g~ lmn—p)? /20, duy ...du,.

where 7 = {ui + -+ u2 = xi +--- +x2}.

Here we encounter the ﬁrst problem. to solve the above integral. To do so
we make the following simplification: assuming that each X; is a random
variable distributed as a normal with mean y, =0 and deviation ¢; = g, in
other words with density function f - (x;). This is the only case where we find
the above integrals solvable.

Using these kind of density functions implies studying the algorithm’s be-
haviour when the density functions are centered on the optimum, so we are
really very near the optimum. But here we wonder: is the optimum actually
reached? If the answer is yes, what is the speed of convergence as the dimension
increases?

In order to answer these questions we carry out the following analysis:

1. To ensure that at each step we do not move away from the optimum, we
have to demonstrate that

W=0=u=0 Vvt (63)

2. To prove that the optimum is reached we have to see whether
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o —0 ast— oo. (64)

3. We study the speed of convergence as dimension increases. This study allows
us to compare the difficulty in approaching the optimum as dimension in-
creases.

5.2. Calculation of W' and o'+

First of all, as in the linear case, in order to calculate y/*! and ¢'+! we need to
find the expression of 4'(Q(x)):

A’(Q(X))A’(fo-) = / / ( ﬂl_) e R
J=1 7

where & = {uj + -+ +u2 > x] + --- +x2}. Taking into account the change of
variable u;/6 = t;, with i = 1,... n, we obtain:

1 " 2 2
A(0x) = —= L/”./.ﬁm**m”m.”da7
00 = (52 !

where 7 = {f} +--- + 2 > Q(x)/a}. This integral can be solved thanks to the

generalization to n dimensions of the spherical change of variable in dimension

three. This change can be seen in detail in the Appendix A. Here we give the

essential information:

e The variables (#,...,t,) are changed to the variables (p,o,_1,%,2,...,
o, 061).

e The range of variation of each new variable is

0<p< oo, (65)
_n/2<dn717a11727~"7“2<n/2a (66)
0<o <27, (67)

e The Jacobian of the transformation is

n—3

|J,| = p" ' -cosay - cos? oz - --cos" ot o - cOS" T op . (68)
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Using this change the integral is modified to

2n n/2
> / dcxl/ coscxzdaz/ cos? oz dag - - -
—n/2 —7r/2

n/2
cos" 3 a,_»do, » / cos" 2o,y do,_
—mn/2

20w = 5

i

(%)

/

—n/2

o0

\/—
— (\/_>"271H/ﬂ/2 cos ﬁdﬁ/ ple 2 dp,  (69)

where S(n) = 2n(/)" > /I'(n/2) is the constant associated with the spherical
change of variable in » dimensions (see the Appendix A). Therefore, substi-
tuting the value of S(n) above

t _ 1 nzn(ﬁ)n_z = n—lg=p*/2
0w = (5 o /@/a” ap. (70)

Let 7, denote indefinite integral [ p"le 2 dp, and I,(u,v) denote definite
integral 7,|". The integral 7,(1/Q(x) /0, 0c) has different values when 7 is odd or
even. When 7 is odd 7;(1/O(x)/a, 00) is an incomplete Gamma function (it has
no explicit expression), meaning that from here we only work with even di-

% o —pZ/de

X
\\

mension. We emphasize this fact writing 45 (Q(x)). Therefore

e e e

Vim) o=t J e
=5 1(1 - hy(v/O(X) /5, 00) (71)
In order to solve integral I, we write:
u=p"?=du= 2n—-2)p* *dp, (72)
dv = pe*”z/2 do=v= —e*"z/z, (73)
so that

IZn = —p2n72€7p2/2 + (2}’! — 2) / p2”73ef”2/2 dp
—p¥ 2 4 (20 = 2) - Lyys. (74)

substituting the expressions of I,_;, with j =2,...,2n —2:
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Ly = —p" 2% — (2n = 2)p> e P2 — (2n—2)(2n — 4)

e (2n—2)(2n—4)---2-1e "

= —eipZ/z [pznz + Z pznizj(zn - 2) (2” N 4) o (Zn - 2(7 - 1))‘|
=2
_ e [ e Z p20) L i ”—'1 (75)

Taking into account equation (75), integral 45, (O(x)) can be expressed as
follows:

45,(Q(x))

1 2 1 ) ) n!
— | a2 ym2 2(n=j) . i1,
271 (n—1)! { ¢ (” T2 n(nj)!)]

oo

=2 o0)/o

%'C_Q(XWGZ[(%)"1+2(Q£§))"j‘2/_l'n(nn7—!j)!]

(n—1)! gD = n(n — j)!

1-n -0(x)/24% n . ) . n!
- [(Q(x))"“ £ ,].

The next step is to calculate integral A (x;):

1 2n—1 R
)= [ [ (\/2—) R 41 (O(x)) s .. day

1 2n—1 21,,1
= / . / ( ) e—(x%+-~+x%n)/202 .
2n—1 \/27‘(0’ (l’l — 1)'

e, ) /207 n-1 . n—j . _2(j-1)  Hj-1
T 0w + M) 2
Jj=2
n!
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Changing the variable, x;/¢ = t;, and taking into account that (Q(x))"
(2 + (2 +---+£))", the expression of & (x;) can be written as

2n—1 —n
h(x1) = L '721 e (att,) L g/
V21 62<”_1)(n — 1)! R2-1

n

1 i

F+dB+ - +8)" +d W +SB+ - +15,)
=2

, . !
. gl it n— de ... dty,.
n(n =)

Making again the generalization to 2n — 1 dimensions of the spherical
change of variable in dimension three:

- 1\ 2! yl-n 271(\/5)2"73
her=(75) e e

> 5 282
. / p2n72efp‘efxl/20‘
0

n » ) ) '
4 (2 + 02p?)" - g2 L ! ”7' dp
=2 }’l(l’l _J)

() T

2

(x% + azpz)n

.e—x%/ZUZ l/ pZn—Ze—pz (xf + 62p2)"*1

0

n ] oo .
2-1) i1, M =269 (2 2,2 4,1
D I A A

(77)

Unfortunately to compute integrals [;* p¥ e (X2 + 02p?)" ' dp, with
j=1,...,2nis not an easy task, hence to find an explicit general expression for
hi(x;) is difficult. Therefore we have solved this integral for some finite cases

(by parts). It allows us to give a general idea concerning the algorithm’s per-
formance as the problem dimension increases.
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5.3. Analyzing the algorithm’s behaviour

As explained above we solve h;(x;) in some finite cases. Although our
analysis will not be so general as in the linear case, however we do obtain some
information about the algorithm’s behaviour near the optimum.

The finite cases are

2n=2,4,6,8,10,12, 14, 16, 18,20, 22, 24, 26,28, 30, 40,
50,60, 70, 80,90, 100, 150, 200, 300, 400, 500, 600. (78)

After obtaining the values for /4 (x;), for the above cases, we substitute them
in the expression of p*!, obtaining u/*! = 0 for every ¢. The results of substi-
tuting these values in the expression of ¢'*! are summarized in Table 1.

Table 1
Values of ¢'*! for some finite cases
2n GH»I
2 0.7071 o'
4 0.7906 o'
6 0.8291 o'
8 0.8524 o'
10 0.8683 o'
12 0.8800 o'
14 0.8891 o'
16 0.8964 o'
18 0.9025 o'
20 0.9076 o'
22 0.9120 o'
24 0.9159 o'
26 0.9192 ¢’
28 0.9223 ¢!
30 0.9249 o'
40 0.9352 o'
50 0.9422 ¢’
60 0.9473 o'
70 0.9513 ¢'
80 0.9545 ¢!
90 0.9571 o'
100 0.9594 o'
150 0.9669 o'
200 0.9714 ¢'
300 0.9767 o'
400 0.9799 o'
500 0.9820 o'
1

600 0.9836 ¢
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Fig. 3. Factor of decrease of ¢'*!.

As can be seen in Table 1, for these finite cases we can write ¢'*! = a,,0'. The

factor of decrease ay, is represented in Fig. 3.
Having the {a,,} data we consider convenient to find a formula that

approximates it, in other words, to “fit” a curve through the points in {a,,}
data. It allows us to estimate the speed of convergence. We find the following

least-squares fit to data:

g(n) = 1— (\);_t. (79)

Fig. 4 shows that g(n) fit properly the {a,,} data.
The results indicate that

1. The value of ¢ — 0 as t — oo in the analyzed dimensions, therefore the al-
gorithm reaches the optimum.

2. Due to g(n) seems to fit properly the points in {a,,} data, the speed of con-

vergence decreases with the dimension as O(1/4/n).
Therefore we can conclude that in the finite cases studied, the algorithm

reaches the optimum, but the speed of convergence decreases as the dimension
of the problem increases.
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6. Conclusions

This work is one of the few that deal with mathematical modelling of EDAs.
We have modelled the UMDA_ algorithm with tournament selection applied to
linear and quadratic functions when an infinite number of tournaments is
performed.

Based on this modelling we have analyzed its behaviour in n-dimensional
linear functions and in an n-dimensional quadratic function. In the case
of linear functions we conclude that the algorithm does not work correctly in
linear function L;(x) = >_7 , x;, with x = (x1,...,x,) € R". After doing certain
assumptions in the case of quadratic function O(x) = Y7 | x?, we have proved
for some finite dimensions that the algorithm reaches the optimum. Moreover,
the speed of convergence is slower when the dimension increases.

The obtained results are closely related to the distributions chosen (unidi-
mensional normals). It will be helpful to study the behaviour of the algorithm
when other distributions are used.

Now our main objective is to arrive at an analogous model and analysis for
the UMDA algorithm in the discrete case.
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Appendix A

This section explains in detail the generalization to n dimensions of the
spherical change of variable in dimension three.

The first step is to solve the problem for n = 4. In spherical coordinates the
position of a point P(x1,x,,x3,x4) in the space is determined by four numbers p,
o, o, o3, where
e p is the distance from point P to the origin.

e o5 is the angle formed by the vector OP and its projection (denoted by 7)
upon the plane OX;X>.X5.
e 0, is the angle formed by the projection of 7 (denoted by 7,) upon the plain

00X 1 .X.

e ¢, is the angle formed by axis X; and 7,.

Taking these facts into account, we can write the old coordinates depending

on the new ones:

X4 = psinog, (A1)

X3 = pCOS 03 Sin oy, (A.2)

Xy = P COS 03 COS 0y SIN oty (A.3)

X| = p COS 0,3 COS 0y COS 0 - (A4)
For any point P(x,x;,x3,X4) € R*, each new variable varies in

0<p< oo, (A.5)

—m/2< 0,03 < /2, (A.6)

0< o <27 (A7)
Jacobian of the change Jj is

J4 = pcos o cos 0. (A.8)

Therefore after making this change of variable in integral:
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////Wf(xl,xz,xg,xz;)dxldxzdx3dx4, (A9)

we obtain

2n /2 n/2 00
/ / / / f(p,o3,00,01) - pCcosoy, cos® o3 dot; doy dors dpp.
0 -n/2 J-n/2 JO

Taking into account the above arguments, we can say that using the gen-
eralization to n dimensions of the spherical change of variable in dimension
four, integral

:/.../R”f(xl,...,xn)dxl...dx,l, (A.11)

changes to

2n n/2 00
5 —/ / / / F(p, 0ty 00)p" " cosa, - cos® as
—n/2 —n/2 JO

cos" %o,y doy don das . . . da,_» dot,_3 dor,_; dp.

(A.10)

In the integrals we have to solve in this article using this change of variable,
function f only depends on p. Therefore, the above integral can be written as

follows:
2n /2 /2
:/ drxl/ cos oczdocz/ cos® oz das - - -
0 -n/2 —n/2

/2 n/2 00
x/ cos" 3 oc,,,zdfxn,2/ cos" 2 oc,,,ldoc,,,l/ 0" f(p)dp
—n/2 —n/2 0
—ZnH / cos' Bdp / "1 (p)dp. (A.12)
n/2 0

To solve this integral it will be useful to calculate the constant:

n)zZnﬁ/_n cos' fdp = 27IH\/_ r(s) (A.13)

/2 (1 é)

where I' is the Gamma function. Simplifying

S(n) = % (A.14)

2
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