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Abstract

A method for segmentation and recognition of image structures based on graph homomorphisms is presented in this paper.
It is a model-based recognition method where the input image is over-segmented and the obtained regions are represented by
an attributed relational graph (ARG). This graph is then matched against a model graph thus accomplishing the model-based
recognition task. This type of problem calls for inexact graph matching through a homomorphism between the graphs since
no bijective correspondence can be expected, because of the over-segmentation of the image with respect to the model. The
search for the best homomorphism is carried out by optimizing an objective function based on similarities between object and
relational attributes defined on the graphs. The following optimization procedures are compared and discussed: deterministic
tree search, for which new algorithms are detailed, genetic algorithms and estimation of distribution algorithms. In order to
assess the performance of these algorithms using real data, experimental results on supervised classification of facial features
using face images from public databases are presented.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we propose a method for segmentation and
recognition of image structures or objects based on a model
of the imaged scene. The idea is to represent knowledge
about the structures in the model as a graph. Based on an
over-segmentation, input (i.e. target) image information is
also represented as a graph. More specifically, anattributed
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relational graph (ARG) is used to represent the model
and the image content. Therefore, the recognition proce-
dure amounts to find a suitable matching between both
graphs.

Graph representations are widely used for dealing with
structural information in different domains such as net-
works, psycho-sociology, image interpretation and pattern
recognition, to name but a few. One important problem to
be solved when using such representations is graph match-
ing. In order to achieve a good correspondence between two
graphs, the most used concept is the graph isomorphism and
a lot of work is dedicated to the search for the best isomor-
phism between two graphs or subgraphs[1]. However in a
number of cases, the bijective condition is too strong, and
the problem is expressed rather as an inexact graph matching
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problem. For instance, inexact graph matching appears as an
important area of research in the pattern recognition field. In
several approaches graphs are used to represent knowledge
and information extracted from images, where vertices rep-
resent the regions or entities of the image and edges show
the relationships between them. Cartography, robotics and
autonomous agents, character recognition, and recognition
of brain structures are examples of areas in which this type
of representation appears. Because of the usually schematic
aspect of the model and difficulty to accurately segment the
image into meaningful entities, no isomorphism can be ex-
pected between both graphs. Such problems call for inexact
graph matching. The technique of inexact graph matching
has been extensively studied in several different domains
such as pattern recognition, computer vision, cybernetics,
among others[2]. Most works on inexact graph matching
rely on the optimization of some objective function. This
function usually measures the adequacy between vertices
and between edges of both graphs, involving both the
similarity between attributes of vertices and the similarity
between attributes of edges, as well as the structure of the
graph. Existing optimization methods include combinatorial
optimization techniques[3], relaxation techniques[4,5], ex-
pectation maximization (EM) algorithm[6,7], estimation of
distribution algorithms (EDAs)[8], and genetic algorithms
[9]. Other methods are more concerned by the structure itself
of the graphs and use tree search and propagation techniques
[10], heuristic-based graph traversing[11], graph editing
[12,13]and graph labeling based on probabilistic models of
attributes[14].

In a previous paper[15], estimation of distributions al-
gorithms have been developed for inexact graph matching.
Here we develop new algorithms based on tree search,
which constitute one of the contribution of the paper. As
a result, the following optimization procedures are applied
to real-world data, and then compared and discussed in
this paper: deterministic tree search, classical genetic algo-
rithms and estimation of distribution algorithms. Another
main contribution of this paper is to adapt them to the prob-
lem of model-based recognition problem through matching
optimization, and to compare and evaluate them on real
data.

An experiment about the recognition of facial features
has been devised in order to evaluate the aforementioned
optimization algorithms used in our method. Face recog-
nition has received intense and growing attention from the
computer vision community, partially because of the many
applications such as human-computer interaction, model-
based coding, teleconferencing, security and surveillance.
A particularly important task that arises in different prob-
lems of face recognition is the location and segmentation
of facial feature regions, such as eyebrows, iris, lips, and
nostrils[16]. For instance, segmentation of facial regions is
important for feature-based face recognition[17], medical
applications[18] and analysis of facial expressions[16].
In this paper, we have applied our method to segment and

recognize facial features using face images from public
databases, with the aim of comparing the optimization
algorithms.

This paper is organized as follows. In Section 2, we
present our graph-based approach for solving model-based
recognition of image structures. The optimization algorithms
assessed in this paper are discussed in Section 3. The exper-
imental results evaluating and comparing these algorithms
are described in Section 4. Some comments on our ongoing
research are given in Section 5.

2. Homomorphism between ARGs

2.1. Notations and definitions

In this work,G̃= (N, E) denotes a directed graph where
N represents the set of vertices ofG̃ andE ⊆ N ×N the set
of edges. Two verticesa, b of N are adjacent if(a, b) ∈ E.
If each vertex ofG̃ is adjacent to all others, theñG is said
to be complete. We define an attributed relational graph as
G = (N, E, �, �), where� : N → LN assigns an attribute
vector to each vertex ofN. Similarly, � : E → LE assigns
an attribute vector to each edge ofE. We typically have
LN = Rm andLE = Rn, wheremandn are the numbers of
vertex and edge attributes, respectively. ARGs have been ex-
tensively used in computer vision and artificial intelligence
in problems of model-based recognition and structural scene
analysis. In such approaches, the scene is composed of a
number of objects arranged according to some structure.
Usually, each object is represented by a vertex of the ARG,
being characterized by a set of features encoded by the ver-
tex attribute vector, while the ARG edges represent the rela-
tion between objects. The vertices and the edges attributes
are called object and relational attributes, respectively. In the
present approach, we need two ARGsG1=(N1, E1, �1, �1)

andG2=(N2, E2, �2, �2), which will be henceforth referred
to as theinput (i.e. derived from the image) and themodel
graphs, respectively.|N1| denotes the number of vertices in
N1, while |E1| denotes the number of edges inE1. We use a
subscript to denote the corresponding graph, e.g.a1 ∈ N1 de-
notes a vertex ofG1, while (a1, b1) ∈ E1 denotes an edge of
G1. We use a superscript to enumerate the nodes of a graph,

i.e. a1
1, a2

1, . . . , a
|N1|
1 ∈ N1. Similar notations are used

for G2.
The easiest way of obtaining the model graphG2 is by

manually segmenting a prototype image followed by repre-
senting it by the corresponding ARG. Section 4 illustrates
this by showing the generated model for our experiments.
As far asG1 is concerned, the input image is segmented
by applying a watershed algorithm to the image gradient,
which results in an over-segmented image (any other over-
segmentation method could be used as well). The input graph
G1 is subsequently obtained from the over-segmented im-
age, with each vertex representing an image connected re-
gion. Each vertex ofG1 is adjacent to all otherG1 vertices,
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and it is also adjacent to itself, i.e.∀a1 ∈ N1, (a1, a1) ∈ E1.
The same applies toG2.

Theassociation graph̃GA betweenG1 andG2 is defined
as the complete graph̃GA=(NA, EA), with NA=N1×N2.

A graph homomorphism hbetweenG1 andG2 is a map-
ping h : N1 → N2|∀a1 ∈ N1, ∀b1 ∈ N1, if (a1, b1) ∈ E1,
then (h(a1), h(b1)) ∈ E2. Note that |N1| is often much
greater than|N2| in model-based recognition problems
where each object of the image can be subdivided in several
regions (over-segmentation).

A solution of an inexact match problem betweenG1
and G2 can be expressed as a subgraphG̃S = (NS, ES)

of the association graphG̃A between G1 and G2
with NS = {(a1, a2), a1 ∈ N1, a2 ∈ N2} such that
∀a1 ∈ N1, ∃a2 ∈ N2, (a1, a2) ∈ NS and ∀(a1, a2) ∈
NS, ∀(a′

1, a′
2) ∈ NS, a1 = a′

1 ⇒ a2 = a′
2 which guarantees

that each vertex of the image graph has exactly one label
(vertex of the model graph) and|NS | = |N1|. Such solu-
tion defines a homomorphism betweenG1 andG2. G̃S is
built as a clique ofG̃A. This approach only considers the
structure of the graphs.

Clearly, there are many possible homomorphisms that
represent an inexact match betweenG1 and G2, and we
need to define an objective function to assess the quality
of a given homomorphism and its suitability with re-
spect to each specific application. This criterion should
include, additionally to the structural aspects, informa-
tion on the attributes. In particular, the homomorphism
should minimize the dissimilarity between the object at-
tributes of the mapped vertices fromG1 to G2 and the
respective relational attributes associated to the matched
edges.

2.2. Objective function

The evaluation of the quality of a solution expressed by
G̃S is performed through an objective function. Finding
the best solution then amounts to minimize this function.
In this paper we have explored the following objective
function:

f1(G̃S) = �

|NS |
∑

(a1,a2)∈NS

cN (a1, a2)

+ (1 − �)

|ES |
∑

e∈ES

cE(e), (1)

wherecN (a1, a2) is a measure of the adequacy betweena1
anda2, i.e. a measure of dissimilarity (or similarity if the ob-
jective function is to be maximized) between the attributes
of a1 and a2. Similarly, if e = ((a1, a2), (b1, b2)), cE(e)

is a measure of the dissimilarity between edge(a1, b1) of
the image and edge(a2, b2) of the model. Note thatcN

andcE are supposed to be normalized between 0 and 1 in
Eq. (1). Typically,cN (a1, a2) will be defined as a decreas-
ing function of the similarity between vertex attributes.

If two vertices a1 and a2 have the same attributes (high
similarity), thencN will be very low and the association
of a1 anda2 will be favored when minimizingf1. On the
other hand, associations between nodes having different
attribute values will be penalized. The term depending on
edge comparison can be interpreted in a similar way. The
specific form of the similarity or dissimilarity measures
depends on the type of attributes. Some examples will be
given below for the application chosen to illustrate the
approach.

The functionf1 is a simple weighted average of measures
of qualities of vertex associations (first sum) and of edge as-
sociations (second sum). Weighted mean operators achieve a
compromise between the similarities. Such operators have a
compensation effect which is interesting in cases where both
low and high similarities occur. For instance a low similar-
ity between a model node (or edge) and an image node (or
edge) with respect to one attribute can be compensated by a
high similarity with respect to another attribute. Such oper-
ators allow to weight differently node attributes and edge at-
tributes, or to give more importance to some attributes than
to other ones. This is particularly useful when characteristics
of objects or of relations have not the same level of stability
and variability. For instance if an attribute corresponds to a
highly variable feature for which differences are expected
between the model and the image, a higher dissimilarity can
be expected between the model and the image, but it should
have a low impact on the global objective function. One
noticeable point inf1 is that it only considers the quality of
the actual associations. It does not take into account possi-
ble similarities between vertices or edges that have not been
matched. Nevertheless, solutions where a lot of non-matched
nodes have a good similarity should not be favored. In order
to take this into account, a more sophisticated function could
be defined.

3. The optimization algorithms

Among the different possible approaches for finding a
suitable homomorphism based on the objective function de-
scribed in the previous section, we developed, tested and
compared several methods based on heuristics and on evo-
lutionary computation techniques. We already applied some
of them to other applications[9,19,20].

We explore a beam search algorithm often applied to dif-
ferent problems in artificial intelligence. Here we propose a
new algorithm of this type adapted to inexact graph match-
ing (a preliminary version was shortly introduced in Ref.
[21]). Evolutionary computation techniques are proposed in
order to reduce the number of solutions to be analyzed. The
evolutionary computation algorithms that we have applied
and tested are Genetic Algorithms (GAs) and Estimation of
Distribution Algorithms (EDAs), which are also discussed
below and adapted to the aim of this work.
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3.1. Tree search algorithm

This algorithm finds a solution by creating a search tree
with each vertex representing a pair(k, l), wherek repre-
sents thekth vertex of the input graph (i.e.ak

1) and l rep-

resents thelth vertex of the model graph (i.e.al
2), thus

analogous to the nodes of the association graphG̃S intro-
duced in Section 2.1. The search tree is initialized with a
dummy root vertex(0, 0) that is expanded in|N2| sons
(1, 1), (1, 2), . . . , (1, |N2|). The chosen objective function
f1 (see Section 2.2) is calculated for each son. The cheaper
leaf in the tree is taken to be expanded in the next loop.
In this first expansion of the tree, the only leaves are the
nodes that have just been expanded, but this will not be the
case after the second node expansion. It is hence necessary

to calculatecN (a1
1, a

j
2), j = 1, . . . , |N2| (see Eq. (1)), i.e.

the cost of matching the input graph nodea1
1 to each model

graph nodeaj
2. This first step does not involve calculating

the edge costscE since only one node of each graph is being
considered so far. Suppose that(1, 3) is chosen. i.e.a1

1 is

matched toa3
2. Then,(1, 3) is analogously expanded in|N2|

sons(2, 1), (2, 2), . . . , (2, |N2|), the objective function for
each newly born son is calculated and the cheaper tree leaf
among all leaves (including nodes left unexpanded in previ-
ous steps) is taken to be expanded. It is necessary to calculate

cN (a2
1, a

j
2), as well as the edge costscE((a1

1, a2
1), (a3

2, a
j
2)),

j = 1, . . . , |N2|. As new nodes are expanded more terms
cN and cE are taken into account by the objective func-
tion. All matchings between edges must be taken into ac-
count once a tree leaf is expanded. For instance, suppose
that (2, 4) is chosen as the cheapest node. Then(2, 4) is
expanded in|N2| sons (3, 1), (3, 2), . . . , (3, |N2|). In or-
der to calculate the value of the objective function for each

new node, it is necessary to calculatecN (a3
1, a

j
2), as well as

the edge costscE((a2
1, a3

1), (a4
2, a

j
2)), j = 1, . . . , |N2|, and

cE((a1
1, a3

1), (a3
2, a

j
2)), j = 1, . . . , |N2|. The normalization

terms |NA| and |EA| must be set properly when calculat-
ing the objective function for each node since the number
of considered vertices and arcs depends on the depth of the
exploded nodes.

It is worth noting that all leaves are considered at each
step, i.e. tree nodes previously left unexpanded are also can-
didates to be expanded. For instance, in our previous exam-
ple, at the third iteration we had:
Expanded nodes so far: (1, 3) and(2, 4).
Nodes to be considered for being expanded:(1, j), j =

1, . . . , |N2|; j �= 3 and(2, j), j = 1, . . . , |N2|; j �= 4.
The process is repeated until a tree vertex(|N1|, l) is

reached, meaning that all|N1| vertices inG1 have been as-
signed to a vertex inG2, thus defining a suitable homomor-
phism between the two graphs. This procedure is summa-
rized in Algorithm 1.

Algorithm 1 defines a priority queue and returns a pointer
to the cheaper vertex when thep = priority_remove(pl) is

Algorithm 1 Tree search algorithm

pl = priority_init(); /* initializes the priority queue */
p0= tree_init(); /* initializes the search tree */
p = p0;
priority_insert(pl, p); /* insert a tree pointer in the

priority queue */
endflag= 0;
while (endflag�= 1) do

p = priority_remove(pl); /* p is the cheaper vertex */
if (solution(p, input_graph))then

improve_solution(p);
save_solution(fpout,p);
endflag= 1;

else
explode(p, input_graph, model_graph); /* expands

the cheaper vertex */
end if
priority_insert_sons(pl, p); /* insert the newly born

leaves in the priority queue */
end while

called. The cost of each tree vertex is calculated within the
explodefunction based on the adopted objective function
and involves the evaluation ofcN (a1, a2) andcE(e) for the
corresponding vertices and edges.

We have limited the maximum size allowed for the pri-
ority queue and, once this limit is reached, the more expen-
sive vertices are discarded from the queue. This solution is
similar to the beam search algorithm, which saves time and
space complexity at the cost of not considering many paths
in the tree (and therefore possibly loosing a better solution).
We found in practice that this limitation allows the algo-
rithm to converge fastly and that the solution quality does
not critically depend on the maximum allowed size.

One of the main drawbacks with this approach is that a
solution is created based on “local” decisions, i.e. each node
is labeled by choosing the cheapest tree leaf from the pri-
ority queue. Clearly, the node price at each step only takes
into account the tree nodes above the leaf under considera-
tion, and the remaining subtree is not considered (because
it has not been expanded yet), which often leads to sub-
optimal solutions (i.e. local minima). We have proposed a
randomized variation of the tree search method and inves-
tigated the solutions produced by it in Ref.[22]. The idea
is to randomize the search by creating a priority list ofk
candidates (k =100 in our experiments) having the smallest
dissimilarity measures. Then, the next leaf to be expanded
is chosen randomly among the candidates of this list. This
procedure is executed several times, and since different ex-
ecutions may lead to different solutions, we select the best
one. This random algorithm provides much better results
than the deterministic one in many runs[22], thus suggest-
ing that the tree-search algorithm could be improved.
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Therefore, we have implemented a post-processing step
in order to get the solution subsequently improved. Once a
solution is reached by the above procedure, the algorithm
tracks its path in the tree, from leaf to root, and verifies the
price of the solution obtained by changing the node label
by the other possible labels for that node. If the obtained
solution is cheaper than the previous one, then it is updated
with the new label for that node (otherwise, nothing is done).
The algorithm then proceeds for the next node in the tree. If
the solution has been improved at least once after traversing
a leaf-to-root path, this procedure is repeated again from
the leaf. Convergence is reached after traversing the leaf-to-
root path with no improvements on the solution. This final
procedure is represented as theimprove_solution(p) step in
algorithm 1.

3.2. Genetic algorithms

GAs [23,24]are stochastic heuristic evolutionary compu-
tation techniques. They keep a population formed by indi-
viduals (i.e. solutions), and make it evolve towards better
solutions according to a fitness function by selecting indi-
viduals and applying cross-over and mutation operators to
them. In our problem, each individual represents a corre-
spondence hypothesis, that is, a correspondence for each of
the vertices in the input graph to a vertex in the model graph.

The individuals in the GA represent a solution for the
optimization problem stated in the previous section. In our
concrete case, we propose to use an individual representa-
tion which contains|N1| genes (one per each node ofG1
that has to be recognized), and in which each gene can con-
tain an integer value between 1 and|N2| (that is, a label
representing a node of the model graphG2). More formally,
given an individualx = (x1, . . . , x|N1|), the fact thatxi = k,
for 1� i � |N1| and 1�k� |N2|, means that this solution
proposes to matchith vertex ofG1 with the kth vertex of
G2. The fitness value of the solutionx is computed using
the objective function (Section 2.2) as fitness function.

Regarding the literature on genetic algorithms, we have
chosen two types of general purpose GAs. The first one
is known as the elitist genetic algorithm (eGA)[25], and
consists in keeping the best individual in a population and
regenerate all the other individuals for the next generation.

The second GA type applied is steady-state (ssGA)[26],
where two individuals are randomly chosen in a generation,
undergo cross-over in order to generate a new individual,
and this is then compared to the worst individual of the
generation. The worst of both is then removed.

The eGA was programmed to stop the search automati-
cally at a maximum of 100 generations. In the case of ssGA,
as it generates only a new individual each iteration, it was
programmed in order to generate the same number of indi-
viduals as in eGA.

The initial population for both GAs was generated us-
ing a random generation procedure based on a uniform
distribution for all the possible values. In both GA types,

a population size of 2000 individuals was chosen, with a
mutation probability of 1.0/|N1| (where|N1| is the number
of vertices of the input graph) and a cross-over probability
of 1. We decided to set this last parameter to its maximum
value since all the different genetic algorithms tested in
our experiments are elitist ones, and therefore we ensure
that the fittest individual of each generation will remain
in the next one. The reason for using an elitist approach
in all our genetic algorithms is that the theoretical proof
of GAs to converge to the best solution can be done for
this type of GAs. Furthermore, usually eGAs obtain better
results than canonical GAs, and after our preliminary tests
we concluded that this fact was also true for our type of
problems.

3.3. Estimation of distribution algorithms

EDAs [8,27], which were introduced about 10 years ago
[28,29], are also stochastic heuristic search strategies within
the evolutionary computation approaches, where, similarly
as GAs, a number of solutions or individuals are created
every generation, thus evolving until a satisfactory solution
is achieved.

The motivation for the use of EDAs is that the behavior
of GAs depends to a large extent on the choice of opera-
tors and probabilities for crossing and mutation, size of the
population, rate of generational reproduction, the number
of generations, and others. Experience on the use of these
algorithms is required in order to choose the suitable val-
ues for these parameters. In addition, EDAs have already
shown their better performance in many classical optimiza-
tion problems[8] and also than other inexact graph match-
ing techniques[30].

The main difference between EDAs and other evolution-
ary search strategies is that the evolution of the population
from a generation to the next one is performed by esti-
mating the probability distribution of the fitter individuals,
creating a probabilistic graphical model. If the individuals
are composed of discrete values, this probabilistic graphical
model has the form of a Bayesian network. The next gener-
ation of fitter individuals is created by sampling the induced
model. Therefore, in EDAs the new population of individ-
uals is generated without using neither cross-over nor mu-
tation operators. Instead, the new individuals are sampled
starting from the probability distribution estimated from the
database containing only selected individuals from the pre-
vious generation.

The representation of solutions (i.e. individuals) and the
fitness value of the solution for EDAs have been chosen
exactly the same as for GAs.

Let X = (X1, . . . , Xn) be a set of discrete random vari-
ables, and letxi be a value ofXi , the ith component of
X. Let y = (xi)Xi∈Y be a value ofY ⊆ X. A probabilistic
graphical model forX is a graphical factorization of the joint
probability distribution,p(X=x) values. The representation
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X1     X2     X3     ...     Xn eval

1
2
...

R

3      3       4      ...      5
2      5       1      ...      4
...     ...      ...      ...     ...

4      2       1     ...      2

32.78
33.45

...

37.26

Dl+1

X1     X2     X3     ...     Xn

1
2
...

N

4      1       5      ...      3
2      3       1      ...      6
...     ...      ...      ...     ...

1      5       4     ...      2

D
l
N

.   .   .   .   .   .   .   .

X1     X2     X3     ...     Xn eval

1
2
...

R

4      5       2      ...      3
5      3       1      ...      6
...     ...      ...      ...     ...

1      5       4     ...      2

13.25
32.45

...

34.12

D0

Selection of N<R individuals

Induction of the
probability model

Sampling R individuals
from pl (x) 

Selection of
N<R individuals

X1 X2

X3

Xn-1

Xn

pl (x ) = p l (x |Dl  )
N

Fig. 1. Illustration of the EDA approach in optimization.

of this model is given by two components: a structureSand
a set of conditional probabilities.

The structureS of the model forX is a directed acyclic
graph (DAG) that describes a set of conditional interdepen-
dencies between the variables onX. Let PaS

i
represent the

set of parents-variables from which an arrow is coming out
in S- of the variableXi in the probabilistic graphical model.
The structureS for X assumes thatXi and its non descen-
dants are independent givenPaS

i
, i = 2, . . . , n. Therefore,

the factorization can be written as follows:

p(x) = p(x1, . . . , xn) =
n∏

i=1

p(xi | paS
i ). (2)

The EDA approach is illustrated inFig. 1. Four main steps
are identified in all EDAs:

(1) Firstly, the initial populationD0 of M individuals is
generated. The generation of theseM individuals is usu-
ally carried out by assuming a uniform distribution on
each variable, and next each individual is evaluated. This
has also been done in our EDAs (M = 2000 in our
experiments).

(2) Secondly, in order to make the(l−1)th populationDl−1
evolve towards the next one (Dl), a numberN (N �M)
of individuals are selected according to a criterion. We
denote byDSe

l−1 the set of selected individuals from
generation(l − 1). In our case, we have decided to
choose the half of the population (N =M/2) formed by
theN fittest individuals.

(3) Thirdly, then-dimensional probabilistic modelpl(x) =
p(x|DSe

l−1) that better represents the inter-dependencies
between then variables is induced. This step is also
known as thelearning procedure, and it is the most
crucial one, since representing appropriately the depen-
dencies between the variables is essential for a proper
evolution towards fitter individuals.

(4) Finally, the new populationDl constituted byM new
individuals is obtained by carrying out the simulation
of the probability distribution learned in the previous
step. The simulation method used in our experiments is
the one known asProbabilistic Logic Sampling(PLS),
which was proposed in Ref.[31]. Usually an elitist ap-
proach is followed, and therefore the best individual of
populationDl−1 is kept in Dl . As a result, a total of
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M − 1 new individuals is created every generation in-
stead ofM.

Steps 2–4 are repeated until a stopping condition is verified.
In our particular case, we have chosen to stop the search
when uniformity in the generated population is obtained, or
when a maximum of 100 generations has been reached.

A common way of classifying the different EDAs in the
literature is by taking into account the maximum number of
inter-dependencies between variables that they accept (max-
imum number of parents that a variableXi can have in the
probabilistic graphical model). The reader can find in Ref.
[8] a more complete review of this topic. Usually, 3 main
categories are identified:

(1) Without interdependencies: All the EDAs belonging to
this category assume that then-dimensional joint prob-
ability distribution factorizes as a product ofn uni-
variate and independent probability distributions, that is
pl(x) = ∏n

i=1 pl(xi).
An illustrative example in this category is the Univari-
ate Marginal Distribution Algorithm (UMDA)[32], in
which the relative marginal frequencies of theith vari-
able within the subset of selected individualsDSe

l−1 are
estimated.

(2) Pairwise dependencies: all the EDAs in this category
estimate the joint probability distribution by only taking
into account dependencies between pairs of variables.
An example of this second category is the Mutual In-
formation Maximization for Input Clustering (MIMIC)
proposed in Refs.[33,34].

(3) Multiple interdependencies: Estimation of Bayesian
Networks Algorithm[35] (EBNA) is an example of an
EDA that belongs to this category. EBNA takes into
account multiple inter-dependencies between variables
by constructing a probabilistic graphical model with
no restriction in the number of parents that each of
the variables can have. Another example of an EDA in
this category is the Factorised Distribution Algorithm
(FDA) [27], which is based on a fixed probabilistic
graphical model and therefore it does not add a learning
step as in former EBNA.
The three different EDAs mentioned so far (UMDA,
MIMIC, and EBNA) have been applied in this paper,
each of them as representatives of their corresponding
EDA category.

4. Experimental results

4.1. Application: facial feature recognition

The proposed approach has been applied in a series of ex-
periments for facial feature segmentation based on finding
a suitable homomorphism between two ARGs. First the fa-
cial landmarks are located by a tracking method and used to

Fig. 2. (a) Original image; (b) its masked version containing only
the regions of interest around the landmarks; (c) face model man-
ually segmented; (d) model superimposed to the face image.

Fig. 3. Over-segmented image by the watershed algorithm.

define a limited region that is considered by the recognition
procedure (seeFig. 2). The model is manually obtained from
a reference image. The image in which recognition has to
be performed is segmented using a watershed method which
provides an over-segmentation (seeFig. 3). Both input and
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model faces are represented by ARGs and the respective at-
tributes are computed. The objective function is optimized
using one of the three proposed methods and the final seg-
mentation produced by the method may be evaluated.

The initial step to segment the facial feature regions is
to locate the face in the image, which can be done both
in still images and in video sequences. The latter means
to detect the face in a frame and to track it in the subse-
quent frames. In our approach, these steps are performed
by a recently proposed technique that represents a face us-
ing the Gabor wavelet network (GWN)[36]. Furthermore,
the GWN acts as a rigid model that providesapproxima-
tive landmarkswhich are located near the facial features to
be segmented[37] (e.g. eyes, nose and mouth). These land-
marks are used in two different ways in order to make our
approach more efficient: (1) only certain regions around the
landmarks are considered; and (2) the landmark information
is used by the optimization algorithm to constrain the so-
lution search space. The GWN allows a real-time efficient
face tracking based on the whole face, being robust to facial
feature deformations such as eye blinking and smile.1 The
reader is referred to Ref.[37] for complete details about the
GWN approach.

The model graph should contain vertices associated to
each facial feature of interest, e.g. for each eyebrow, iris,
nostril, mouth and the skin. It is important to note that, in
the model ofFig. 2(c), some single facial features have been
subdivided, e.g. the eyebrows. This has been done because
the adopted vertex and edge attributes are calculated based
on average measures over the segmented image regions.
Therefore, model attributes extracted from large regions tend
to be less representative because such regions often present
larger variability with respect to the attributes. Some facial
features have thus been subdivided in order to circumvent
such a potential problem. Furthermore, the fact that the skin
is not a well-localized facial feature (in contrary to pupils
and nostrils) presents an additional difficulty for introducing
structural relations between skin and the other features. As
an example, while it is possible to define structural relations
such as “the pupil is above the nostrils”, it would be more
difficult to define a similar relation with respect to the skin.

The face images used in our experiments have been
acquired using a standard digital camera, as well as faces
from standard public databases available on-line. We
used images from the University of Stirling, available at
http://pics.psych.stir.ac.uk/ . This database
has been used for testing face analysis and recognition
methods in other papers in the literature, presenting simi-
lar characteristics than others such as Feret and XM2VTS
[38,39]. The tested images show how robust the method
is with respect to images presenting different acquisition
conditions (i.e. geometry, illumination, distance from the
camera, etc.).

1An on-line demo can be found athttp://www.vision.
ime.usp.br/ ∼cesar/journals/rti04tracking/

The face region extracted by the GWN undergoes a wa-
tershed transform thus producing an over-segmented im-
age (seeFig. 3). Too small regions produced in the over-
segmentation are discarded.

4.2. Attributes

The object attributes are calculated from image connected
regions while relational attributes are based on the spatial
disposition of the regions. The adopted attributes for the
experiments presented in this paper are:

• Object attributes: Let G = (N, E, �, �) be an ARG and
let a ∈ N . The set of object attributes�(a) is defined
as�(a) = (g(a), gmin(a), l(a)), whereg(a) denotes the
average gray-level of the image region associated to ver-
texa, gmin(a) denotes the average gray-level of the 15%
darkest pixels of the image region associated to vertex
a, andl(a) is a region label assigned with respect to the
approximative landmarks provided by the tracking pro-
cedure. Bothg(a) andgmin(a) are normalized between
0 and 1 with respect to the minimum and maximum pos-
sible grey-levels, and the value of 15% used to calculate
gmin(a) is a parameter that may be changed depending
on the test images. The attributegmin(a) has been in-
cluded in order to facilitate the recognition of textured
regions composed of light and dark pixels, such as the
eyebrows and, in some cases, the mouth. This feature
was particularly important in the experiments performed
in this paper. The existence of both light and dark pixels
in such facial features may lead to higher average values
(i.e. g(a)), and the addition ofgmin avoids confusion
with brighter regions like the skin. The region labell(a)

indicates which approximative landmark (i.e. left eye,
right eye, nose, mouth) is the closest to the region cen-
troid. The region label attribute is particularly useful for
constraining the search tree, which is implemented by
the dissimilarity measure between object attributes.

• Relational attribute: Let a, b ∈ N be any two vertices of
G, andpa andpb be the centroids of the respective cor-
responding image regions. The relational attribute�(a, b)

of (a, b) ∈ E is defined as the vector�(a, b) = (pb −
pa)/(2dmax), wheredmax is the largest distance between
any two points of the considered image region. Clearly,
�(a, b) = −�(b, a).

4.3. Dissimilarity measures

There are two dissimilarity measurescN andcE used by
the objective functionf1 (Eq. (1)), associated respectively to
vertices and edges of the association graph . The measurecN

is related to object attributes, whilecE is related to relational
attributes. Their definitions (chosen for this application) are
given below.

http://pics.psych.stir.ac.uk/
http://www.vision.ime.usp.br/cesar/journals/rti04tracking/
http://www.vision.ime.usp.br/cesar/journals/rti04tracking/
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Fig. 4. Segmentation and recognition of facial features using (a) deterministic tree search, (b) eGA, (c) ssGA, (d) UMDA, (e) MIMIC and
(f) EBNA. In this example, the target and the model image are the same.

Let (a1, a2) denote a vertex of̃GA, with a1 ∈ N1 and
a2 ∈ N2. The dissimilarity measurecN (a1, a2) is defined as

cN (a1, a2)=

×




�N |g1(a1) − g2(a2)|
+(1 − �N)|gmin1(a1)

−gmin2(a2)|, if l1(a1) = l2(a2),

∞ otherwise,

where(gi(ai), gmini (ai ), li (ai)) are the object attributes of
Gi , i = 1, 2. The parameter�N (0��N �1) controls the
weights ofg andgmin. It is worth noting that, if the ver-
ticesa1 anda2 correspond to regions associated to differ-
ent approximative landmarks, then the dissimilarity measure
equals∞, and this means thatf1 is not evaluated in such
cases. This fact is important because it allows the optimiza-
tion algorithm to avoid exploring non-desirable solutions
such as trying to classify a region near the left eye approx-
imative landmark as mouth, for instance.

Let e denote an edge of̃GA, with end-points(a1, a2) ∈
NA, a1 ∈ N1 anda2 ∈ N2 and(b1, b2) ∈ NA, b1 ∈ N1 and
b2 ∈ N2. We compute the modulus and angular differences
between�(a1, b1) and�(a2, b2) as

�m(e) = |‖�(a1, b1)‖ − ‖�(a2, b2)‖|

and

�a(e) = | cos(�) − 1|
2

,

where� is the angle between�(a1, b1) and �(a2, b2), i.e.
cos(�) is calculated as

cos(�) = �(a1, b1) · �(a2, b2)

‖�(a1, b1)‖‖�(a2, b2)‖ .

The dissimilarity measurecE(e) is defined as

cE(e) = �E�a(e) + (1 − �E)�m(e),

where�(ai , bi) is the relational attribute (i.e. vector) asso-
ciated to edge(ai , bi) ∈ Ei . The parameter�E (0��E �1)
controls the weights of�m and�a . It is important to note
that �(a, a) = �0. This fact means that, when two vertices in
G1 are mapped onto a single vertex ofG2 by the homo-
morphism, we havecE(e) = ‖�(a1, b1) − �0‖ = ‖�(a1, b1)‖,
which is proportional to the distance between the centroids
of the corresponding regions in the over-segmented image
(in such cases, we define cos(�) = 1). Therefore,cE would
give large dissimilarity measures when assigning the same
label (i.e. the target vertex inG2) to distant regions and lower
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Fig. 5. Correspondences between model and target image recog-
nized facial features, used to calculate the affine transform to match
the model mask over the target image.

measures when assigning the same label to near regions,
which is intuitively desirable in the present application.

Note that when usingf1 as function to be minimized,cN

andcE have to be evaluated only for pairs of vertices and
edges actually existing iñGS .

4.4. Algorithm evaluation

An ARG has been obtained for each input image and
a homomorphism has been found using the search algo-
rithms described in Section 3. The obtained results are shown

Fig. 6. Model mask matched over the target images using the recognized facial features.

in Fig. 4, showing the obtained segmentation and recogni-
tion of the eyebrows, nostrils and lips using the different
search algorithms. As it can be seen, the method is able to
correctly recognize the facial features of interest, and is ro-
bust to substantial differences between the model (Fig.2(d))
and the target image. A problem that we have experienced
here is that the outer portions of the eyebrows in the model
contain several skin pixels, leading to misclassifications near
it. Therefore, we have identified as “eyebrows” only the two
inner portions that compose each eyebrow in the model. Be-
cause of the structural constraints in the objective function,
the outer portions of the eyebrows in the obtained results
have not been included, which is a drawback that we intend
to circumvent in future work.

It is interesting to note that the recognized facial features
can be used in order to match the model over the input
face, which is suitable for visualization purposes and visual
assessment of the matching process. Firstly, the centroids of
some a priori defined regions of the model are calculated.
In the present case, we have chosen to use the eyebrows,
pupils, nostrils and lips. The centroids of the respective
regions are also calculated for the target image. It is worth
noting that these regions have been recognized by the
homomorphism, as previously explained. Then, the affine
transformation that better maps the model centroids onto
the corresponding target image centroids is calculated[40].
Fig. 5 illustrates the correspondences between model and
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Table 1
Figures of the 6 cases that we analyzed, illustrating the mean values after 5 executions of each of the algorithms (except from the tree
search algorithm, which is deterministic)

bebie1 dani

Best Time Eval. Best Time Eval.

TreeS 0.326 00:05 — 0.33 00:05 —
eGA 0.457 00:54 202,000 0.463 00:52 202,000
ssGA 0.381 00:40 202,000 0.384 00:37 202,000
UMDA 0.360 00:31 184,710 0.326 00:28 173,914
MIMIC 0.323 00:38 163,119 0.326 00:35 162,720
EBNA 0.323 02:49 175,913 0.326 02:38 163,119

deise f014
Best Time Eval. Best Time Eval.

TreeS 0.313 00:01 — 0.318 00:05:21 —
eGA 0.434 00:33 202,000 0.464 01:30:35 202,000
ssGA 0.357 00:26 202,000 0.388 01:07:50 202,000
UMDA 0.310 00:14 143,909 0.317 00:58:26 184,894
MIMIC 0.311 00:17 129,008 0.317 01:07:46 167,117
EBNA 0.310 01:19 153,924 0.317 04:40:16 185,908

f041 m036
Best Time Eval. Best Time Eval.

TreeS 0.322 00:11 — 0.323 00:23 —
eGA 0.463 01:35 202,000 — — —
ssGA 0.389 01:09 202,000 0.402 01:54 202,000
UMDA 0.319 00:58 196,702 0.321 01:41 201,900
MIMIC 0.319 01:10 181,910 0.321 02:08 201,900
EBNA 0.319 05:15 195,103 0.321 09:11 201,900

Thebestcolumn corresponds to the mean best fitness value obtained through the search. Thetime column shows the CPU time required
for the search (in hh:mm format), and theeval.one shows the number of individuals that had to be evaluated in order to end the search.

target image centroids. This affine transformation is then
applied to the model mask, which is thus projected onto the
target image. Some obtained results are shown inFig. 6.

The results obtained from the different executions of the
algorithms are discussed below. Six different face images
were analyzed, andTable 3 shows for each of them the
number of regions (nodes) and edges after the automatic
over-segmentation procedure. The model used is shown in
Fig. 2 and it contains 62 nodes and 3844 edges.

We executed 5 times each of the stochastic algorithms for
each of the examples, and inTable 1the results are given
in the form of the mean fitness value of the best individual
at the last generation, the CPU time, and the number of
different individuals created during the search. The latter
computation time is presented as a measure to illustrate the
difference in computation complexity of all the algorithms.
The machine in which all the executions where performed
is a two processor Ultra 80 Sun computer under Solaris
version 7 with 1 Gb of RAM.Fig. 7 illustrates the mean
performance of the search process of GAs and EDAs during
the different generations.

The null hypothesis of the same distribution densities
was tested (non-parametric tests of Kruskal–Wallis and
Mann–Whitney) for each of the examples and algorithm
executions with the statistical package S.P.S.S. release 10.1.
The results of these tests are shown inTable 2, and they
confirm the significance of the differences of all the al-
gorithms regarding the value of the best solution obtained
of EDAs and GAs. They also show that differences be-
tween the different EDAs in the best individual obtained
are not statistically significant, but these are significant
among eGA and ssGA. In all the examples the EDAs ob-
tained better results than the GAs, and these differences
are statistically significant regardingTable 2. Also, the
differences in execution time are also significant in all the
algorithms, and EDAs required always more time. As a
result, regardingTables 1and2, we can conclude that the
results are much better in EDAs at the expense of a higher
computation time, but EDAs arrive to a more satisfactory
final individual by having to evaluate less individuals than
GAs. This fact is important to take into account if the com-
putation of the fitness function is more complex (i.e. if it



2110 R.M. Cesar et al. / Pattern Recognition 38 (2005) 2099–2113

Fig. 7. Comparison on the performance of GAs and EDAs for the examples ofbebie1, (a) and (b), anddani, (c) and (d), showing the fitness
of the best individual along the search process. Thex axis corresponds to the fitness function and they axis to the generation number. The
plots (b) and (d) have been added to note more clearly the difference between the EDAs. These graphs show that the performance of all
the EDAs is better than such of GAs during the whole research process.

requires more CPU time) than the one selected for our
experiments.

In the light of the results obtained for the fitness values,
we can conclude the following: generally speaking, EDAs
obtained in all the executions a fitter individual than tree
search and GAs, but although the number of individuals cre-
ated is lower than GAs, the CPU time required was bigger.

It is worth emphasizing that one of the main goals of this
work is to present a comparative performance assessment of
some state-of-the-art optimization methods that may be in-
corporated in the proposed framework, showing how these
methods compare with respect to accuracy of the obtained
results and to computation time as well. In this research
phase, we have neither aimed at implementing optimized al-
gorithms with respect to computation time nor concentrated
efforts on finding out if there are efficient algorithms to im-
plement the proposed framework, which will be done in due
time.

Besides the important problem of assessing the optimiza-
tion algorithms with respect to the objective function and
execution time, it is also important to analyze the obtained
results with respect to the problem context, i.e. recognition
of the facial features of interest. In order to perform this task,
we have generated a ground-truth for some faces by manu-
ally labelling the over-segmented images, i.e. by obtaining

a human solution for the problem. Of course, such ground-
truth is prone to some subjectivity, since a human operator
decides the label of each region of the over-segmented im-
age with respect to the model (nearby regions around the
facial features are generally difficult to be classified, being
often labeled differently depending on the operator). Then,
the ground-truth is compared to each automatically labeled
image to obtain the number of errors, i.e. number of mis-
classified regions (with respect to the ground-truth). Some
of the error regions typically obtained in our experiments
are shown inFig. 8. This figure shows 3 types of errors
found in our experiments:

• very small regions nearby the facial features (indicated
by “A” in Fig. 8), which have generally been missed by
the operator while producing the ground-truth;

• regions in the outer portion of the eyebrows (indicated
by “B” in Fig. 8), which have been left out during the
classification procedure because of the above explained
reasons;

• true errors such as the region indicated by “C” inFig. 8.

Table 4shows the obtained errors for some images. We have
performed this ground-truth-based assessment (total number
of misclassified regions and percentage with respect to the
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Table 2
Statistical significance for all the 6 examples and algorithms, by
means of the results of the non-parametric tests of Kruskal–Wallis
and Mann–Whitney

GAs-EDAs Among GAs Among EDAs

bebie1 Best p < 0.001 p = 0.008 p = 0.620
Eval. p < 0.001 p = 1.000 p = 0.084
Time p = 0.016 p = 0.008 p < 0.001

dani Best p < 0.001 p = 0.008 p = 0.677
Eval. p < 0.001 p = 1.000 p = 0.063
Time p = 0.177 p = 0.008 p = 0.002

deise Best p < 0.001 p = 0.008 p = 0.078
Eval. p < 0.001 p = 1.000 p = 0.068
Time p = 0.121 p = 0.008 p < 0.001

f014 Best p < 0.001 p = 0.008 p = 0.105
Eval. p < 0.001 p = 1.000 p = 0.064
Time p = 0.495 p = 0.008 p = 0.002

f041 Best p < 0.001 p = 0.008 p = 0.811
Eval. p < 0.001 p = 1.000 p = 0.012
Time p = 0.643 p = 0.008 p < 0.002

m036 Best p < 0.001 — p = 0.085
Eval. p < 0.001 — p = 1.000
Time p = 0.306 — p = 0.002

The first column shows the result of the test comparing all EDAs
with all GAs, the second is the test for comparing eGA and ssGA,
and the third is the comparison between the three EDAs.

Table 3
Figures of the 6 cases that we analyzed, illustrating the number of
nodes and arcs that are considered

bebie1 dani deise f014 f041 m036

Nodes 147 148 112 176 183 228
Arcs 21609 21904 12544 30976 33489 51984

total number of regions in the segmented image) for the
different optimization algorithms.

As it can also be seen, the ssGA and eGA algorithms lead
to much poorer results with respect to the recognized facial
features and the best solution obtained. This result can be
partially understood by the fact that these are both general
purpose algorithms. The use of GAs specially thought for
our problem could lead to better results. However, it must
also be said that the EDAs applied are also general purpose
ones.

It should be noted that all these results should be con-
sidered only from the optimization point of view and for

Fig. 8. Example of some typical error regions.

Table 4
Number of misclassified regions in each test image for each algo-
rithm

deise f014 f041 m036

Errors % Errors % Errors % Errors %

TreeS 2 1.79 9 5.11 6 3.28 10 4.39
eGA 21 18.75 36 20.45 46 25.14 50 21.93
ssGA 35 31.25 63 35.8 57 31.15 — —
UMDA 1 0.89 12 6.82 7 3.83 12 5.26
MIMIC 1 0.89 12 6.82 8 4.37 15 6.58
EBNA 1 0.89 11 6.25 5 2.73 15 6.58

The “Errors” column indicates the number of misclassified re-
gions, while “%” shows the percentage with respect to the total
number of regions in the image.

comparison purpose. It is clear that absolute results could be
improved by introducing more attributes, in order to guar-
antee that the optimum off1 actually corresponds to the
expected solution (with no error).

5. Concluding remarks and future work

A new method for model-based recognition in images
has been proposed, by expressing the problem as an inex-
act graph matching problem and its optimization through
an objective function. New algorithms have been proposed
and other ones have been adapted to this problem. As an
illustration, we described a new approach for facial feature
segmentation based on graph homomorphisms: we have
defined ARG representations of a face model and the image
to be recognized, an objective function, and applied the
optimization algorithms in order to evaluate and compare
them.

Our ongoing work aims at improving the method robust-
ness and at generalizing it in a number of different ways,
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e.g. using fuzzy morphisms[41] and developing other object
and relational attributes. A foreseen extension is to adapt the
method to time varying images such as video sequences, by
taking advantage of the homomorphism found in a frame
in a video sequence when searching for the one in the next
frame. Such a strategy could explore a model parameter up-
date procedure, and of extended graphs including “temporal”
edges linking regions in successive images.

Furthermore, the above definition of graph homomor-
phism implies that all vertices inG1 are mapped toG2 and
if the input image presents features not known by the model,
they will be classified. For instance, in the face application,
if the input face has glasses and the model graph does not
include them, the glass regions will be classified as skin
or some other facial feature. Two possible solutions to this
problem can be designed. The first one is to leave some of
the G1 vertices unmapped. The second approach is to de-
fine an “unknown label vertex” in the model graph, to which
the unclassified input regions should be mapped. Both ap-
proaches present specific difficulties and are currently being
considered in our research. Also other objective functions
are currently under investigation.
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