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" Data characteristics

e Let D = {xy4,...,Xy} be a data set of instances
e And X; = {z;1,...,zin}, being n the number of observable

features

e A class label can be observale or hidden for each feature,
if observable ¢; € (1,...,¢), the set of class labels
e The observable features could be continuous, discrete or a

mix of them

e The set of ¢ is the key to tackle the problem
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Supervised classification

¢;, Vi is known

A predictive model is built based on a labelled data set
This model will be able to predict the value of ¢; 1 given
Xi+1

A honest validation is necessary in order to avoid overfitting

There are many approaches to solve this kind of
classification:
e Bayesian approach
e Decision trees
e Logistic regression
)
)

SVM
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e ¢;,V; (and |C|) is (are) unknown
e This kind of problem is often called Clustering
¢ A descriptive model is built based on the set of
observable features
e This model will partition the data into a certain number of
groups, called clusters
 Validation is a very difficult task because of the absence of
the ground truth
e There are different approaches to solve this kind of
classification:
o Partitional
e Hierarchical
¢ Density-based
o Model-based
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Dimensionality reduction

e The number of observable features (n) can be too large
(high-dimensionality problems)

e The curse of dimensionality appears

¢ Traditionally, the number of features is reduced globally

e There are two main approaches:

o Feature extraction
o Feature subset selection (FSS)
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Problem description

Constraints in unsupervised problems

e Some additional information may be available in
unsupervised problems

¢ This information can be used not only for validating, but
also for building the model

e There are different types of constraints:

e Number of clusters

e Size clusters restrictions

o Pairwise contraints (must-link and cannot-link)
o Partially labelled data



Problem description

Partially labelled data set

o Two subsets of instances: D = {A], X,,}, where:

e X is the labelled subset (like a supervised problem)
e X, is the unlabelled subset (like an unsupervised problem)

D X1 X, C
X 1,1 T1n C1
X7, TL1 TLn Cr,
X041 | P41, Triin | 7
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Problem description

Assumptions about partially labelled data set

X; = {xi,...,zin} € R™ (continuous features)

¢ > 2 (multiclass data set is desirable)

The final number of groups will be K, with K > ¢
Cse(1,...,¢,....,K),ifx, € X,

Each group could be defined in a different subspace of
features
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General idea

Framework description

e The aim is to obtain a classification with the option of
discovering new labels

e This is a kind of semisupervised classification

e Each of the final labels could be described by a different
subset of features

o This is called subspace classification
¢ The final number of labels is suggested by the framework
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- Framework
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Phase 1. Translating knowledge

¢ To translate the instance-level knowledge (known labels)
into feature-level knowledge (subspaces of features)

o To cluster all the instances in the identified subspaces

¢ |f some instance is not grouped in the subspaces, then
new groups must be found

Phase 2. Discovering new knowledge

¢ To find new subspaces that define new groups
¢ To cluster all the unclassified instances in the new groups
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Partitional approach

’ Partitional framework

—

e The framework is developed using supervised techniques,
whenever possible...

e ...and using unsupervised partitional-based approaches,
when necessary

e The proposed solution was built using standard algorithms
in order to check framework viability
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Find subspaces that describe the known groups

e Only the subset &) is used

e Separating the instances that belong to each known label
from the instances that belong to the remaining known
labels in each case

e ¢ new smaller problems of binary supervised classification

e The subspaces of features are outputted using wrapper
FSS (logistic regression + genetic algorithm)
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Find subspaces that describe the known groups
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~ Phase 1: Translatlng knowledge
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Clustering all the instances using the outputted subspaces

e Allinstances in D are used

» Clustering all the instances in each found subspace

e The aim is to find ¢ genuine clusters (one cluster in each
subspace)

e Any x € X, can be grouped in the genuine clusters

e Metric pairwise constrained k-means (MPCKM) is used
trying to satisfy the known constraints



Partitional approach

Clusterlng all the instances using the outputted subspaces

—_—
Cluster 1
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Partitional approach

Refining the genuine clusters

e An instance could belong to more than one genuine cluster

e ltis not possible in a hard partitioning solution (each
instance can belong to only one group)
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e An instance could belong to more than one genuine cluster

e |t is not possible in a hard partitioning solution (each
instance can belong to only one group)

Eliminating repeated instances

o If x;, withi e {1,...,L} and ¢; = z, belongs, among others,
to the genuine cluster where the majority of instances with
z label are, then the instance x; will be deleted from the
other clusters

o Ifx;, withi e {L+1,..., N} belongs to more than one
genuine cluster, then the instance will remain in the group
in which its distance to the centroid was the minimum after
normalization
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Find a new subspace that describes the remaining instances

e The subset of instances grouped in the genuine clusters is
T whereas the subset of instances that do not belong to
any groupis R, with 7TUR=Dand TNR =10

¢ A new subspace of features that distinguishes between 7
and R can be identified

e This subspace is found according to the same process
explained in the previous phase
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Phase 2. Discovering new knowledge
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Clustering the remaining instances

e Using instances from R only and the last identified
subspace of features

e Hierarchical clustering, for readily observing the distances
between clusters

e The challenging task is to select the number of clusters in
the hierarchy

e Internal clustering validation indices

e Very dependent on data
e A parallel research was done using outliers and noise
dimensions
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- Phase 2. Discovering new knowledge
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e Based on our experience and in the commented research

Voting scheme to select the number of clusters

e Gamma, Calinski, Silhouette and Davies-Bouldin indices
¢ Voting scheme to select the number of clusters
e The indices are ranked based on our study
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Phase 2. Discovering new knowledge
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Output of the partitional approach

Each instance belongs to one, and only one, cluster (hard
partition)

K clusters, with K = c+ k

c is the number of a priori known classes

e Each cluster € C is described by a different subspace of
features

k is the number of clusters found in the last phase
o All k clusters in another subspace of features
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¢ Real data sets from UCI and synthetic data sets generated
in subspaces

e Allinstances are labelled but only a percentage of labels is
used in each case to build the models

¢ 1000 executions with 10 %, 20 %, 30 % and 40 % of
randomly labelled instances. Some of the class labels are
completely unknown

e ltis assumed that original class labels match natural
clusters

e Seven external validation measures used
¢ Results are compared using a Wilcoxon signed-rank test
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Accuracy of classification

o Similar results when compared with MPCKM in real data
sets although the real data sets do not have labels
separated in different subspaces

¢ In synthetic data sets, results are dependent on the
number of features:
o With 15 features, MPCKM obtained better results in the
majority of indices
o With 25 features, the framework outperformed MPCKM in
all the indices
» With 50 features, results also depend on the percentage of
a priori knowledge
e 10% and 20 % of labelled instances, MPCKM obtained
better results in the majority of indices
e 30 % and 40 % of labelled instances, the framework
outperformed MPCKM in all the indices
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- Summary of results (Il)
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Number of clusters

e The proposed framework selected the number of clusters
more accurately than MPCKM in all data sets

e The higher the data dimensionality, the better the number
of clusters is approximated
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Different supervised algorithms and FSS techniques could
improve the subspace selection

The goodness during FSS should be taken into account

The number of clusters associated to each label could be
different to 1

The last clusters could be also defined in distinct
subspaces of features

Different unsupervised algorithms could improve the last
clustering

There are many methods to select the number of clusters
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- Motivation
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Once the idea was validated using the partitional
approach, it must be improved

Probabilist approach allows to integrate all the steps using
a mixture of distributions

The distributions are assumed to be Gaussians

There are not model-based clustering works using:

o A priori knowledge
o Clusters in different subspaces
o Automatically selection of the number of clusters

Notation
Fromnowon,i={1,...,L,L+1,...,N},j={1,...,F} and
m=A{1,...,¢,...,K} are indices for instances, features and
componentes, respectively
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Introductlon to Gaussian mixtures
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e Each component of the mixture is assumed to be a cluster

e |t is a soft clustering approach where each instance is
assumed to be generated according to several probability
distributions shaping a mixture model

e The mixture probability density is:
p(x | 0) Z TmP(X | O, (1)

where 6, is the set of parameters and ,,, the mixing
probability of the component m, with =,,, > 0 and

Do Tm = 1.
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Introduction to Gaussian mixtures

e The aim of this approach is to estimate the full parameter
set

e An important parameter estimation method is maximum
likelihood, which in a logarithm form is

N
IL(0) = Y Inp(x; | 0) (@
i=1

e The EM algorithm iteratively approximates the ML
estimation
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Introduction to Gaussian mixtures

If x; = {z1,...,zin}, z;; represents each observable
feature of an instance

We assume the existence of unobserved data items, «;

In this case, «; = {«;1,...,a;x }, (in crisp classification
a;m = 1 if instance ¢ belongs only to the component m)
Introducing this missing data into the data log-likelihood

N K
L) =D 0> i (Tip(X; | Om)) (3)
=1 m=1
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: Adépting Gaussian mixtures to our problem
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e Separating our data set in A; and X, taking into account
the existence of labels and the knowledge about the
components for X;

e Equation 3 can be rewritten as

L C
LL(0) = In Y wim (Tmp(X; | 6m)) +
i=1 m=1

N K
Z In Z Qi (ﬂ'mp(xi | em)) ) (4)
i=L+1 m=1
where w;,, is the knowledge about the labels, being
w;m = 1 if instance ¢ belongs to component m. Note the
difference between the ¢ known components for A; and the
K components (including the previous c) for A,
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Instances and features independence

e Assuming that features and instances are conditionally

independent given the component label, Equation 1 can be
rewritten as

K F
px|0) =T mm H (i | Om) (5)

i=1m=1

being F' the total number of features
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Subspace FSS in Gaussian mixtures
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o A feature will be irrelevant for a component if the
distribution of the feature is independent of the component

¢ A relevant feature for a component will use a specific
component distribution

¢ An irrelevant feature for a component will use a shared
distribution

F
px|0)=T]1¥ Z H (i | O™l | 0)0 ),
o (6)

where v,,,; = 1 if feature j is relevant for component m and
0 in other case
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umber of components selection
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e We use a bottom-up components selection

e Starting from the number of known components, one new
component (in a new subspace) is sought in each iteration
e Two models are built in iteration ¢:
e Model; a. It finds a new component in a subspace of
features
e Model; b. It uses the known components and a
hodgepodge in the complete space of features
e If Model; a is better than Model,; b, a new component is
added to the set of known components
e This converges when

e Model; b is better than Model; a
o Model; a is better than Model, 1 a (penalized comparison)



Probabilistic approach

e Completing the log-likelihood with the subspace FSS and
introducing the unobserved items

¢ And separating between the log-likelihood associated with
the classification (/1) and the associated with the
discovery of new knowledge (I Ls, for model a and [ Loy, for
Model b)

e The complete data log-likelihood is
logL(0) =1Ly + 1Ly, (7)
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Classification data log-likelihood

Classification

L C
1L, = Z Z Wi (In 70, + Z[UW Inp(xij | Om)+
i=1 m=1
+ (1 — vmy) Inp(zij | 05)])), (8)
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- Discovery new knowledge data log-likelihood
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Classification a
N C+1
[Lyg = Z Z(aim(lnﬂ'm‘F
i=L+1m=1

F
-+ Z[vmj Inp(zij | Om) + (1 — vmg) Inp(xi; | 05)])),  (9)

J=1

Classification b

N c il
oy =Y (O (Cim(Inmm + Y (vms Inp(xs; | Om)+
g=l

i=L+1 m=1
F
(1 = vmg) Inp(@s; | 05)))) + dim(In ey + > Inp(@s; | Oetr)) (10)

j=1
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e The expected value of the hidden variable
Eloyj | 0t] = v(au;) given the current parameter estimate in
iteration ¢ is calculated. This was previously expressed as

Qim

o Parameters are reestimated for maximizing the
log-likelihood. The updated parameters are obtained by
computing the partial derivatives of the complete
log-likelihood described above with respect to the different
parameters and equaling to zero
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" Probabilistic framework research
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The study will consist of different comparisons between the
explained models and:

Selecting the number of components using traditional
techniques top-down

Iterating first the classification step and obtaining the
subspaces of the known components before discovering
new components

Different initializations on known labels
Letting w;,, as a (almost) free parameter
Soft knowledge

Using different distributions of probability (not only
Gaussians)

Continuous and discrete features mixed
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Real application

The aim of the framework is to solve the neurons
classification problem

Specifically, the framework emerges due to the
interneurons data characteristics

In any case, the proposal can be applied to any partially
labelled data set

Other possible neuroinformatics applications are:

e Spines classification
e Pyramidal neurons classification



—— Real application
Interneurons data

The data set belongs to Columbia University (R. Yuste’s
laboratory)

220 interneurons characterized by 67 morphological
continuous features

105 unlabelled instances + 115 labelled instances

5 known classes

Possibility of new classes in the unlabelled interneurons
Expert validation



Real application

e Different executions of the partitional framework obtaining:

o Labelled interneurons separated into different groups
integrating some new cells
o |dentification of many labels in unlabelled instances

e The original data set had 37 % of labelled instances. The
current data set has 52 % (from 85 to 115 instances)

e Detection of several outliers
e An outlier was a bad reconstructed neuron
o All validations are based in expert knowledge
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- Conclusions and contributions ()]
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e The framework covers an interesting gap in classification

e Partitional approach, although being a standard solution,
outputted promising results

e All the characteristics of the framework will be better
integrated in the probabilistic approach

e Multiple studies arise from both approaches

¢ Probabilistic approach results are expected to be better
than partitional approach results

e Thus, interneurons data classification using probabilistic
approach could be a great advance for the community



Partially labelled data: classification and

discovery of unknown labels
using subspaces of features

Luis Guerra

l.guerra@upm.es

CIG — Computational Intelligence Group

February, 2011

260k BRAN

CIG




	Introduction
	Problem description
	General idea
	Partitional approach
	Probabilistic approach
	Real application
	Conclusions

