Partially labelled data: classification and discovery of unknown labels using subspaces of features

Luis Guerra

l.guerra@upm.es

CIG - Computational Intelligence Group

February, 2011

Outline

Introduction

- 2 Problem description
- 3 General idea
- 4 Partitional approach
- **5** Probabilistic approach
- 6 Real application

Conclusions

Introduction

- Problem description
- 3 General idea
- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Partially labelled data: classification and discovery of unknown labels

Introduction Problem description Conclusions Perificinal approach Probabilistic approach Real application Conclusions Data characteristics

- Let $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ be a data set of instances
- And $\mathbf{x}_i = \{x_{i1}, \dots, x_{in}\}$, being *n* the number of observable features
- A class label can be observale or hidden for each feature, if observable $c_i \in (1, ..., c)$, the set of class labels
- The observable features could be continuous, discrete or a mix of them
- The set of c is the key to tackle the problem

\mathcal{D}	X_1		X_n	C
\mathbf{X}_1	$x_{1,1}$	•••	$x_{1,n}$	c_1
÷	÷	·	÷	÷
\mathbf{X}_N	$x_{N,1}$		$x_{N,n}$	c_N

Supervised classification

- $c_i, \forall i \text{ is known}$
- A predictive model is built based on a labelled data set
- This model will be able to predict the value of c_{i+1} given \mathbf{x}_{i+1}
- A honest validation is necessary in order to avoid overfitting
- There are many approaches to solve this kind of classification:
 - Bayesian approach
 - Decision trees
 - Logistic regression
 - SVM

• . . .

Unsupervised classification

- $c_i, \forall_i \text{ (and } |C|) \text{ is (are) unknown}$
- This kind of problem is often called *Clustering*
- A descriptive model is built based on the set of observable features
- This model will partition the data into a certain number of groups, called clusters
- Validation is a very difficult task because of the absence of the ground truth
- There are different approaches to solve this kind of classification:
 - Partitional
 - Hierarchical
 - Density-based
 - Model-based
 - ..

Dimensionality reduction

- The number of observable features (*n*) can be too large (high-dimensionality problems)
- The curse of dimensionality appears
- Traditionally, the number of features is reduced globally
- There are two main approaches:
 - Feature extraction
 - Feature subset selection (FSS)

Introduction

2 Problem description

3 General idea

- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Constraints in unsupervised problems

- Some additional information may be available in unsupervised problems
- This information can be used not only for validating, but also for building the model
- There are different types of constraints:
 - Number of clusters
 - Size clusters restrictions
 - Pairwise contraints (must-link and cannot-link)
 - Partially labelled data

- Two subsets of instances: $\mathcal{D} = \{\mathcal{X}_l, \mathcal{X}_u\}$, where:
 - \mathcal{X}_l is the labelled subset (like a supervised problem)
 - \mathcal{X}_u is the unlabelled subset (like an unsupervised problem)

\mathcal{D}	X_1		X_n	C
\mathbf{x}_1	$x_{1,1}$		$x_{1,n}$	c_1
÷	÷	·	÷	÷
\mathbf{X}_L	$x_{L,1}$		$x_{L,n}$	c_L
\mathbf{X}_{L+1}	$x_{L+1,1}$		$x_{L+1,n}$?
÷	÷	·	:	÷
\mathbf{X}_N	$x_{N,1}$		$x_{N,n}$?

Assumptions about partially labelled data set

- $\mathbf{x}_i = \{x_{i1}, \dots, x_{in}\} \in \mathbb{R}^n$ (continuous features)
- $c \ge 2$ (multiclass data set is desirable)
- The final number of groups will be K, with $K \ge c$
- $C_s \in (1, \ldots, c, \ldots, K)$, if $\mathbf{X}_s \in X_u$
- Each group could be defined in a different subspace of features

Introduction

Problem description

3 General idea

- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Framework description

- The aim is to obtain a classification with the option of discovering new labels
 - This is a kind of semisupervised classification
- Each of the final labels could be described by a different subset of features
 - This is called subspace classification
- The final number of labels is suggested by the framework

Framework process

Phase 1. Translating knowledge

- To translate the instance-level knowledge (known labels) into feature-level knowledge (subspaces of features)
- To cluster all the instances in the identified subspaces
- If some instance is not grouped in the subspaces, then new groups must be found

Phase 2. Discovering new knowledge

- To find new subspaces that define new groups
- To cluster all the unclassified instances in the new groups

Introduction

- Problem description
- 3 General idea
- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Partially labelled data: classification and discovery of unknown labels

Partitional framework

- The framework is developed using supervised techniques, whenever possible...
- ...and using unsupervised partitional-based approaches, when necessary
- The proposed solution was built using standard algorithms in order to check framework viability

Phase 1: Translating knowledge

Find subspaces that describe the known groups

- Only the subset \mathcal{X}_l is used
- Separating the instances that belong to each known label from the instances that belong to the remaining known labels in each case
- c new smaller problems of binary supervised classification
- The subspaces of features are outputted using wrapper FSS (logistic regression + genetic algorithm)

Find subspaces that describe the known groups

Phase 1: Translating knowledge

Clustering all the instances using the outputted subspaces

- All instances in ${\mathcal D}$ are used
- Clustering all the instances in each found subspace
- The aim is to find *c* genuine clusters (one cluster in each subspace)
- Any $\mathbf{x} \in \mathcal{X}_u$ can be grouped in the *genuine clusters*
- Metric pairwise constrained k-means (MPCKM) is used trying to satisfy the known constraints

Clustering all the instances using the outputted subspaces

Partially labelled data: classification and discovery of unknown labels

- An instance could belong to more than one genuine cluster
- It is not possible in a hard partitioning solution (each instance can belong to only one group)

Refining the genuine clusters

- An instance could belong to more than one genuine cluster
- It is not possible in a hard partitioning solution (each instance can belong to only one group)

Eliminating repeated instances

- If x_i, with i ∈ {1,...,L} and c_i = z, belongs, among others, to the genuine cluster where the majority of instances with z label are, then the instance x_i will be deleted from the other clusters
- If x_i, with i ∈ {L + 1,..., N} belongs to more than one genuine cluster, then the instance will remain in the group in which its distance to the centroid was the minimum after normalization

Find a new subspace that describes the remaining instances

- The subset of instances grouped in the genuine clusters is *T* whereas the subset of instances that do not belong to any group is *R*, with *T* ∪ *R* = *D* and *T* ∩ *R* = Ø
- A new subspace of features that distinguishes between ${\cal T}$ and ${\cal R}$ can be identified
- This subspace is found according to the same process explained in the previous phase

Clustering the remaining instances

- Using instances from *R* only and the last identified subspace of features
- Hierarchical clustering, for readily observing the distances
 between clusters
- The challenging task is to select the number of clusters in the hierarchy
- Internal clustering validation indices
 - Very dependent on data
 - A parallel research was done using outliers and noise dimensions

• Based on our experience and in the commented research

Voting scheme to select the number of clusters

- Gamma, Calinski, Silhouette and Davies-Bouldin indices
- Voting scheme to select the number of clusters
- The indices are ranked based on our study

Output of the partitional approach

- Each instance belongs to one, and only one, cluster (hard partition)
- K clusters, with K = c + k
- c is the number of a priori known classes
 - Each cluster $\in C$ is described by a different subspace of features
- k is the number of clusters found in the last phase
 - All k clusters in another subspace of features

- Real data sets from UCI and synthetic data sets generated in subspaces
- All instances are labelled but only a percentage of labels is used in each case to build the models
- 1000 executions with 10%, 20%, 30% and 40% of randomly labelled instances. Some of the class labels are completely unknown
- It is assumed that original class labels match natural clusters
- Seven external validation measures used
- Results are compared using a Wilcoxon signed-rank test

Summary of results (I)

Accuracy of classification

- Similar results when compared with MPCKM in real data sets although the real data sets do not have labels separated in different subspaces
- In synthetic data sets, results are dependent on the number of features:
 - With 15 features, MPCKM obtained better results in the majority of indices
 - With 25 features, the framework outperformed MPCKM in all the indices
 - With 50 features, results also depend on the percentage of a priori knowledge
 - 10% and 20% of labelled instances, MPCKM obtained better results in the majority of indices
 - 30 % and 40 % of labelled instances, the framework outperformed MPCKM in all the indices

Summary of results (II)

Number of clusters

- The proposed framework selected the number of clusters more accurately than MPCKM in all data sets
- The higher the data dimensionality, the better the number of clusters is approximated

Possible improvements

- Different supervised algorithms and FSS techniques could improve the subspace selection
- The goodness during FSS should be taken into account
- The number of clusters associated to each label could be different to 1
- The last clusters could be also defined in distinct subspaces of features
- Different unsupervised algorithms could improve the last clustering
- There are many methods to select the number of clusters

Introduction

- Problem description
- 3 General idea
- Partitional approach
- **5** Probabilistic approach
- 6 Real application

Conclusions

Partially labelled data: classification and discovery of unknown labels

- Once the idea was validated using the partitional approach, it must be improved
- Probabilist approach allows to integrate all the steps using a mixture of distributions
- The distributions are assumed to be Gaussians
- There are not model-based clustering works using:
 - A priori knowledge
 - Clusters in different subspaces
 - · Automatically selection of the number of clusters

Notation

From now on, $i = \{1, \ldots, L, L+1, \ldots, N\}$, $j = \{1, \ldots, F\}$ and $m = \{1, \ldots, c, \ldots, K\}$ are indices for instances, features and componentes, respectively

Introduction to Gaussian mixtures

Probabilistic approach Real application Conclusions

- Each component of the mixture is assumed to be a cluster
- It is a soft clustering approach where each instance is assumed to be generated according to several probability distributions shaping a mixture model
- The mixture probability density is:

$$p(\mathbf{x} \mid \theta) = \sum_{m=1}^{K} \pi_m p(\mathbf{x} \mid \theta_m),$$
(1)

where θ_m is the set of parameters and π_m the mixing probability of the component m, with $\pi_m \ge 0$ and $\sum_m \pi_m = 1$.

Introduction to Gaussian mixtures

- The aim of this approach is to estimate the full parameter set
- An important parameter estimation method is maximum likelihood, which in a logarithm form is

$$lL(\theta) = \sum_{i=1}^{N} \ln p(\mathbf{x}_i \mid \theta)$$
(2)

 The EM algorithm iteratively approximates the ML estimation

Partially labelled data: classification and discovery of unknown labels

Introduction to Gaussian mixtures

- If $\mathbf{x}_i = \{x_{i1}, \dots, x_{in}\}$, x_{ij} represents each observable feature of an instance
- We assume the existence of unobserved data items, α_i
- In this case, $\alpha_i = \{\alpha_{i1}, \dots, \alpha_{iK}\}$, (in crisp classification $\alpha_{im} = 1$ if instance *i* belongs only to the component *m*)
- Introducing this missing data into the data log-likelihood

$$lL(\theta) = \sum_{i=1}^{N} \ln \sum_{m=1}^{K} \alpha_{im} \left(\pi_m p(\mathbf{x}_i \mid \theta_m) \right)$$
(3)

- Separating our data set in \mathcal{X}_l and \mathcal{X}_u taking into account the existence of labels and the knowledge about the components for \mathcal{X}_l
- Equation 3 can be rewritten as

1

$$L(\theta) = \sum_{i=1}^{L} ln \sum_{m=1}^{C} w_{im} \left(\pi_m p(\mathbf{x}_i \mid \theta_m) \right) + \sum_{i=L+1}^{N} ln \sum_{m=1}^{K} \alpha_{im} \left(\pi_m p(\mathbf{x}_i \mid \theta_m) \right),$$
(4)

where w_{im} is the knowledge about the labels, being $w_{im} = 1$ if instance *i* belongs to component *m*. Note the difference between the *c* known components for \mathcal{X}_l and the *K* components (including the previous *c*) for \mathcal{X}_u

Instances and features independence

• Assuming that features and instances are conditionally independent given the component label, Equation 1 can be rewritten as

$$p(\mathbf{x} \mid \theta) = \prod_{i=1}^{N} \sum_{m=1}^{K} \pi_m \prod_{j=1}^{F} p(x_{ij} \mid \theta_m),$$
(5)

being F the total number of features

Subspace FSS in Gaussian mixtures

CIG

Probabilistic approach Real application Conclusions

- A feature will be irrelevant for a component if the distribution of the feature is independent of the component
- A relevant feature for a component will use a specific component distribution
- An irrelevant feature for a component will use a shared distribution

$$p(\mathbf{x} \mid \theta) = \prod 1_{i=1}^{N} \sum_{m=1}^{K} \pi_m \prod_{j=1}^{F} [p(x_{ij} \mid \theta_m)^{v_{mj}} p(x_{ij} \mid \theta_s)^{(1-v_{mj})}],$$
(6)
where $v_{mj} = 1$ if feature *j* is relevant for component *m* and 0 in other case

Number of components selection

Probabilistic approach Real application Conclusions

- We use a bottom-up components selection
- Starting from the number of known components, one new component (in a new subspace) is sought in each iteration
- Two models are built in iteration *t*:
 - $Model_t a$. It finds a new component in a subspace of features
 - *Model*_t *b*. It uses the known components and a hodgepodge in the complete space of features
- If $Model_t a$ is better than $Model_t b$, a new component is added to the set of known components
- This converges when
 - $Model_t b$ is better than $Model_t a$
 - $Model_t a$ is better than $Model_{t+1} a$ (penalized comparison)

Complete data log-likelihood

- Completing the log-likelihood with the subspace FSS and introducing the unobserved items
- And separating between the log-likelihood associated with the classification (lL_1) and the associated with the discovery of new knowledge $(lL_{2a} \text{ for } model \ a \text{ and } lL_{2b} \text{ for } Model \ b)$
- The complete data log-likelihood is

$$logL(\theta) = lL_1 + lL_2, \tag{7}$$

Introduction Problem description General ideat Partitional approach Probabilistic approach Real application Conclusions

Classification data log-likelihood

Classification

$$lL_{1} = \sum_{i=1}^{L} \sum_{m=1}^{C} (w_{im}(\ln \pi_{m} + \sum_{j=1}^{F} [v_{mj} \ln p(x_{ij} \mid \theta_{m}) + (1 - v_{mj}) \ln p(x_{ij} \mid \theta_{s})])),$$
(8)

on Problem description General idea Partitional approach Probabilistic approach Real application Conclusions

Discovery new knowledge data log-likelihood

Classification a

$$lL_{2a} = \sum_{i=L+1}^{N} \sum_{m=1}^{C+1} (\alpha_{im} (\ln \pi_m +$$

+
$$\sum_{j=1}^{F} [v_{mj} \ln p(x_{ij} \mid \theta_m) + (1 - v_{mj}) \ln p(x_{ij} \mid \theta_s)])),$$
 (9)

Classification b

$$lL_{2b} = \sum_{i=L+1}^{N} \left(\sum_{m=1}^{C} (\alpha_{im} (\ln \pi_m + \sum_{j=1}^{F} (v_{mj} \ln p(x_{ij} \mid \theta_m) + u - v_{mj}) \ln p(x_{ij} \mid \theta_s))) + \alpha_{im} (\ln \pi_{c+1} + \sum_{j=1}^{F} \ln p(x_{ij} \mid \theta_{c+1})) \right)$$
(10)

Partially labelled data: classification and discovery of unknown labels

CIG

E-step

EM algorithm

• The expected value of the hidden variable $E[\alpha_{ij} \mid \theta t] = \gamma(\alpha_{ij})$ given the current parameter estimate in iteration *t* is calculated. This was previously expressed as α_{im}

M-step

 Parameters are reestimated for maximizing the log-likelihood. The updated parameters are obtained by computing the partial derivatives of the complete log-likelihood described above with respect to the different parameters and equaling to zero

Probabilistic framework research

The study will consist of different comparisons between the explained models and:

- Selecting the number of components using traditional techniques top-down
- Iterating first the classification step and obtaining the subspaces of the known components before discovering new components
- Different initializations on known labels
- Letting w_{im} as a (almost) free parameter
- Soft knowledge
- Using different distributions of probability (not only Gaussians)
- · Continuous and discrete features mixed

Introduction

- Problem description
- 3 General idea
- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Partially labelled data: classification and discovery of unknown labels

Neuronal data applications

- The aim of the framework is to solve the neurons classification problem
- Specifically, the framework emerges due to the interneurons data characteristics
- In any case, the proposal can be applied to any partially labelled data set
- Other possible neuroinformatics applications are:
 - Spines classification
 - Pyramidal neurons classification

ntroduction Problem description General Idea Partitional approach Probabilistic approach Real application Conclusions

- The data set belongs to Columbia University (R. Yuste's laboratory)
- 220 interneurons characterized by 67 morphological continuous features
- 105 unlabelled instances + 115 labelled instances
- 5 known classes

Interneurons data

- Possibility of new classes in the unlabelled interneurons
- Expert validation

Results in interneurons data

- Different executions of the partitional framework obtaining:
 - Labelled interneurons separated into different groups integrating some new cells
 - Identification of many labels in unlabelled instances
 - The original data set had 37 % of labelled instances. The current data set has 52 % (from 85 to 115 instances)
 - Detection of several outliers
 - An outlier was a bad reconstructed neuron
 - All validations are based in expert knowledge

Introduction

- Problem description
- 3 General idea
- Partitional approach
- 6 Probabilistic approach
- 6 Real application

Conclusions

Partially labelled data: classification and discovery of unknown labels

- The framework covers an interesting gap in classification
- Partitional approach, although being a standard solution, outputted promising results
- All the characteristics of the framework will be better integrated in the probabilistic approach
- Multiple studies arise from both approaches
- Probabilistic approach results are expected to be better than partitional approach results
- Thus, interneurons data classification using probabilistic approach could be a great advance for the community

Conclusions and contributions

Partially labelled data: classification and discovery of unknown labels using subspaces of features

Luis Guerra

l.guerra@upm.es

CIG - Computational Intelligence Group

February, 2011

