2022

2021

  • D Quesada, C Bielza, P Larrañaga, Structure Learning of High-Order Dynamic Bayesian Networks via Particle Swarm Optimization with Order Invariant Encoding, International Conference on Hybrid Artificial Intelligence Systems, 158-171

2020

2018

  • Córdoba-Sánchez, I., G. Varando, C. Bielza, and P. Larrañaga, “A fast Metropolis-Hastings method for generating random correlation matrices (Slides)”, International Conference on Intelligent Data Engineering and Automated Learning , vol. Lecture Notes in Computer Science 11314: Springer, pp. 117-124, 2018. 
  • Córdoba-Sánchez, I., G. Varando, C. Bielza, and P. Larrañaga, “A partial orthogonalization method for simulating covariance and concentration graph matrices (Slides)”, Proceedings of Machine Learning Research, vol. 72, pp. 61-72, 2018. 
  • Córdoba-Sánchez, I., E.C. Garrido-Merchán, D. Hernández-Lobato, C. Bielza, and P. Larrañaga, “Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks (Slides)”, Conference of the Spanish Association for Artificial Intelligence 2018, vol. Lecture Notes in Artificial Intelligence 11160: Springer, pp. 44-54, 2018. 
  • Puerto-Santana, C., C. Bielza, and P. Larrañaga, “Asymmetric Hidden Markov Models with Continuous Variables”, CAEPIA 2018: Springer LNAI, Accepted, 2018. 

2016

  • Atienza, D., C. Bielza, and P. Larrañaga, “Anomaly Detection with a Spatio-Temporal Tracking of the Laser Spot”, Proceedings of the Eight European Starting AI Researcher Symposium (STAIRS 2016), pp. 137-142, 2016. 
  • Diaz, J., C. Bielza, J.L. Ocaña, and P. Larrañaga, “Development of a Cyber-Physical System based on selective Gaussian naïve Bayes model for a self-predict laser surface heat treatment process control”, Machine Learning for Cyber Physical Systems: Selected papers from the International Conference ML4CPS 2015: Springer Berlin Heidelberg, pp. 1-8, 2016. 
  • Fernandez-Gonzalez, P., P. Larrañaga, and C. Bielza, “Bayesian Gaussian networks for multidimensional classification of morphologically characterized neurons in the NeuroMorpho repository”, CAEPIA, 17th, 2016. 
  • Larrañaga, P., “Bayesian networks for neuroscience”, Workshop on Advances and Applications on Data Science and Engineering, Madrid, Real Academia de Ingenieria, 2016. 
  • Luengo-Sanchez, S., C. Bielza, and P. Larrañaga, “Hybrid Gaussian and von Mises model-based clustering”, European Conference on Artificial Intelligence, vol. 285, pp. 855-862, 2016. 
  • Ogbechie, A., J. Díaz-Rozo, P. Larrañaga, and C. Bielza, “Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment”, ML4CPS – Machine Learning for Cyber ​​Physical Systems and Industry 4.0, Karlsruhe, Germany, Springer, 2016. 

2015

  • Benjumeda, M., P. Larrañaga, and C. Bielza, “Learning low inference complexity Bayesian networks”, Proc. of the Conference of the Spanish Association for Artificial Intelligence (CAEPIA), 2015. 
  • Córdoba-Sánchez, I., C. Bielza, and P. Larrañaga, Towards Gaussian Bayesian Network Fusion“, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNAI 9161, vol. 9161: Springer International Publishing, pp. 519-528, July, 2015. 
  • Diaz-Rozo, J., C. Bielza, J. Luis Ocaña, and P. Larrañaga, “Machine Learning for Cyber Physical Systems ML4CPS”, Development of a Cyber-Physical System based on selective Gaussian naive Bayes model for a self-predict laser surface heat treatment process control: Springer Vieweg, 2015. 
  • Ochoa, A., J. Diaz-Rozo, and B. Kamp, “Insights for Industry 4.0 Implementation in machine tool servitization”, International Virtual Concept Workshop on INDUSTRIE 4.0, 2015. 
  • Ochoa, A., J. Diaz-Rozo, and B. Kamp, “Challenges and opportunities for servitization in the machine tool industry in the era of Industry 4.0”, 4th International Conference on Business Servitization, 2015. 
  • Rodriguez-Lujan, L., C. Bielza, and P. Larrañaga, “Regularized Multivariate von Mises Distribution”, Proc. of the Conference of the Spanish Association for Artificial Intelligence (CAEPIA), 2015. 

2014

  • Varando, G., C. Bielza, and P. Larrañaga, “Expressive Power of Binary Relevance and Chain Classifiers Based on Bayesian Networks for Multi-Label Classification”, Lecture Notes in Artificial Intelligence, 8754: Springer, pp. 519-534, 2014.

2013

  • Guerra, L., R. Benavides-Piccione, C. Bielza, V. Robles, J. DeFelipe, and P. Larrañaga, “Semi-supervised projected clustering for classifying GABAergic interneurons”, Artificial Intelligence in Medicine 2013, LNAI 7885: Springer, pp. 156–165, 2013. 
  • Lopez-Cruz, P. L., C. Bielza, and P. Larrañaga, “Learning conditional linear Gaussian classifiers with probabilistic class labels”, Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, LNCS 8109: Springer, pp. 139-148, 2013. 
  • Lopez-Cruz, P. L., T. D. Nielsen, C. Bielza, and P. Larrañaga, “Learning mixtures of polynomials of conditional densities from data”, Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, LNCS 8109: Springer, pp. 363-372, 2013. 
  • Mihaljevic, B., P. Larrañaga, and C. Bielza, “Augmented Semi-naive Bayes Classifier”, Advances in Artificial Intelligence, Proceedings of the 15th MultiConference of the Spanish Association for Artificial Intelligence, LNAI 8109: Springer, pp. 159-167, 2013. 

2012

  • Armañanzas, R., P. Martínez-Martín, C. Bielza, and P. Larrañaga, “Restating clinical impression of severity index for Parkinson’s disease using just non-motor criteria”, Proceedings of the 25th European Conference on Operational Research, Vilnius, Lithuania, pp. 231-232, 2012. 
  • García-Bilbao, A., R. Armañanzas, Z. Ispizua, B. Calvo, A. Alonso-Varona, I. Inza, P. Larrañaga, G. López Vivanco, B. Suárez-Merino, and M. Betanzos, “Identification of a biomarker panel for colorectal cancer diagnosis”, Proceedings of the 6th International Meeting on Biotechnology, Bilbao, Spain, pp. 77, 2012. 
  • Lopez-Cruz, P. L., C. Bielza, and P. Larrañaga, “Learning mixtures of polynomials from data using B-spline interpolation”, Sixth European Workshop on Probabilistic Graphical Models (PGM 2012), Granada, Spain, pp. 271-278, 2012. 

2011

  • Borchani, H., C. Bielza, and P. Larrañaga, “Learning multi-dimensional Bayesian network classifiers using Markov blankets: A case study in the prediction of HIV protease inhibitors”, AIME’11 Workshop on Probabilistic Problem Solving in Biomedicine, 2011. 
  • Karshenas, H., R. Santana, C. Bielza, and P. Larrañaga, “Multi-Objective Optimization with Joint Probabilistic Modeling of Objectives and Variables”, Lecture Notes in Computer Science, no. 6576: Springer, pp. 298-312, 2011. 
  • Lopez-Cruz, P. L., C. Bielza, and P. Larrañaga, “The von Mises naive Bayes classifier for directional data”, Advances in Artificial Intelligence, 14th Conference of the Spanish Association for Artificial Intelligence, vol. 7023: Springer, pp. 145-154, 2011. 
  • Santana, R., H. Karshenas, C. Bielza, and P. Larrañaga, “Regularized k-order Markov Models in EDAs”, Proceedings of the 2011 Genetic and Evolutionary Conference (GECCO-2011): ACM Digital Library, pp. 593–600, 2011. 
  • Santana, R., H. Karshenas, C. Bielza, and P. Larrañaga, “Quantitative genetics in multi-objective optimization algorithms: From useful insights to effective methods”, Proceedings of the 2011 Genetic and Evolutionary Conference (GECCO-2011): ACM Digital Library, pp. 91-92, 2011. 
  • Santana, R., C. Bielza, and P. Larrañaga, “Affinity Propagation Enhanced by Estimation of Distribution Algorithms”, Proceedings of the 2011 Genetic and Evolutionary Conference (GECCO-2011): ACM Digital Library, pp. 331–338, 2011. 
  • Zaragoza, J. H., L. E. Sucar, E. F. Morales, C. Bielza, and P. Larrañaga, “Bayesian chain classifiers for multidimensional classification”, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11): AAAI Press, pp. 2192–-2197, 2011. 

2010

  • Borchani, H., P. Larrañaga, and C. Bielza, “Mining Concept-Drifting Data Streams Containing Labeled and Unlabeled Instances”, The Twenty Third International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE’10), vol. 1, pp. 531-540, 2010.
  • Borchani, H., C. Bielza, and P. Larrañaga, “Learning CB-decomposable multi-dimensional Bayesian network classifiers”, Proceedings of the 5th European Workshop on Probabilistic Graphical Models (PGM’10), pp. 25-32, 2010.

2009

  • Diaz, E., E. Ponce-de-Leon, P. Larrañaga, and C. Bielza, “Probabilistic graphical Markov model learning: an adaptive strategy”, MICAI, Lecture Notes in Artificial Intelligence, 5845, vol. 5845: Springer, pp. 225-236, 2009. 
  • Santana, R., C. Bielza, J. A. Lozano, and P. Larrañaga, “Mining Probabilistic Models Learned by EDAs in the Optimization of Multi-Objective Problems”, Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation: ACM, pp. 445-452, 2009. 
  • Vidaurre, D., C. Bielza, and P. Larrañaga, “Variable Selection in Local Regression Models via an Iterative LASSO”, The Eighth Workshop on Uncertainty Processing (WUPES’09), pp. 237-250, 2009. 

2008

  • Correa, M., J. R. Alique, and C. Bielza, “Comparativa de Modelos con Aprendizaje Supervisado: Aplicación a un Proceso Industrial”, IV Simposio de Control Inteligente, 2008. 
  • Correa, M., C. Bielza, J. Pamies-Teixeira, and J. R. Alique, “Redes Bayesianas vs Redes Neuronales en Modelos para la Predicción del Acabado Superficial”, XVII Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, 2008. 

2007

  • Armañanzas, R., B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo, and A. M. Zubiaga, “Bayesian Classifiers with Consensus Gene Selection: a case study in the Systemic Lupus Erythematosus”, Progress in Industrial Mathematics at ECMI 2006, vol. 12: Springer, pp. 560-565, 2007. 
  • Correa, M., M. J. Ramírez, C. Bielza, J. Pamies, and J. R. Alique, “Predicción de la Calidad Superficial Usando Modelos Probabilísticos”, VII Congreso de la Asociación Colombiana de Automática, pp. 1-6, 2007. 
  • García, A., A. Freije, R. Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López Vivanco, T. Suárez, and M. Betanzos, “Gene expression model for the classification of human colorectal cancer and potential CRC biomarkers search”, Drug Discovery Technology, London, UK, 2007. 

2006

  • Correa, M., C. Bielza, M. J. Ramírez, and J. Pamies, “Modelado y Predicción con Redes Probabilísticas. Caso de Estudio: La Rugosidad Superficial”, XXVII Jornadas de Automática, pp. 1356-1361, 2006. 
  • Correa, M., M. J. Ramírez, C. Bielza, and J. R. Alique, “Modelos Probabilísticos para la Predicción de la Rugosidad Superficial en Fresado a Alta Velocidad”, XVI Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, vol. 1, pp. 347-365, 2006.
  • García, A., A. Freije, R. Armañanzas, I. Inza, Z. Ispizua, P. Heredia, P. Larrañaga, G. López Vivanco, T. Suárez, and M. Betanzos, “Simultaneous Search of Genomic and Proteomic Biomarkers in Human Colorectal Cancer”, Genomes to Systems Conference, Manchester, UK, 2006. 

2005

  • Armañanzas, R., B. Calvo, I. Inza, P. Larrañaga, I. Bernales, A. Fullaondo, and A. M. Zubiaga, “Selección de genes asociados a dos enfermedades autoinmunes a partir de microarrays de ADN”, VI Jornadas de Transferencia Tecnológica de Inteligencia Artificial, TTIA (AEPIA), Granada, Spain, pp. 63-70, 2005. 
  • Barreiro, P., M. Ruiz-Altisent, C. Bielza, and A. Moya-González, “Multivariate Analysis of an On-Line NIR Spectrometer under Industrial Use”, Acta Horticulturae, vol. 674, no. 513-519: International Society for Horticultural Science, 2005.

2004

  • Fernandez del Pozo, J. A., and C. Bielza, “Sensitivity Analysis and Explanation of Optimal Decisions”, Second European Workshop on Probabilistic Graphical Models, pp. 81-88, 2004. 

2003

  • Barreiro, P., R. Alonso, E. C. Correa, M. Ruiz-Altisent, J. C. Fabero, L. Casasus, M. Calles, and C. Bielza, “Simulation of Gases in Fruit Storage Chambers with Lattice Boltzman”, Acta Horticulturae, vol. 599: International Society for Horticultural Science, pp. 413-419, 2003. 

2002

  • Fernandez del Pozo, J. A., and C. Bielza, “New Structures for Conditional Probability Tables”, First European Workshop on Probabilistic Graphical Models: Univ. de Castilla-La Mancha, pp. 61-70, 2002. 
  • Puch, R. O., J. Q. Smith, and C. Bielza, “Inferentially Efficient Propagation in Non-Decomposable Bayesian Networks with Hierarchical Junction Trees”, First European Workshop on Probabilistic Graphical Models: Univ. de Castilla-La Mancha, pp. 152-160, 2002. 

2001

  • Barreiro, P., F. García, M. Ruiz-Altisent, and C. Bielza, “Desarrollo de un Instrumento de Ayuda a la Decisión para la Mejora de las Líneas de Confección”, Actas de Horticultura 28, IV Congreso Ibérico de Ciencias Hortícolas, vol. 1, pp. 61-69, 2001. 
  • Barreiro, P., J. C. Fabero, C. Bielza, S. Bielza, R. Sanz, E. Correa, and M. Ruiz-Altisent, “Simulación de Gases en Cámaras de Almacenamiento de Fruta”, 1er Congreso Nacional de Ingeniería para la Agricultura y el Medio Rural, vol. 1, pp. 321-327, 2001.
  • Bielza, C., S. Ríos-Insua, M. Gómez, and J. A. Fernandez del Pozo, Sensitivity Analysis in IctNeo“, Third International Symposium on Sensitivity Analysis of Model Output: CIEMAT, pp. 287-291, 2001. 
  • Fernandez del Pozo, J. A., C. Bielza, and M. Gómez, “Knowledge Synthesis Optimising the Combinatorial Storage of Multidimensional Matrices”, XIXth EURO Summer Institute -Decision Analysis and Artificial Intelligence-, pp. 49-57, 2001. 
  • Fernandez del Pozo, J. A., and C. Bielza, “Knowledge Synthesis on Multidimensional Matrices”, Operational Research Peripatetic Postgraduate Programme, pp. 1-13, 2001. 

2000

  • Ballestero, E., J. M. Antón, and C. Bielza, “Bayesian Approach to Road Selection with Compromise Utility Functions”, 8th International Conference “Information Processing and Management of Uncertainty in Knowledge-based Systems”, vol. 2, pp. 813-820, 2000. 
  • Bielza, C., P. Barreiro, M. I. Rodríguez-Galiano, and J. Martín, “Logistic Regression for Simulating Damage Ocurrence on a Fruit Grading Line”, Congreso Latinoiberoamericano de Investigación de Operaciones y Sistemas, pp. 49-50, 2000. 
  • Gómez, M., and C. Bielza, “Node Deletion Sequences in Influence Diagrams using Genetic Algorithms”, 8th International Conference “Information Processing and Management of Uncertainty in Knowledge-based Systems”, vol. 3, pp. 1291-1298, 2000. 

1999

  • Gómez, M., and C. Bielza, Algoritmo Genético para Secuencias de Eliminación de Nodos en Diagramas de Influencia, , vol. 1, pp. 116-124, 1999. 
  • Mateos, A., S. Ríos-Insua, C. Bielza, M. Gómez, M. Sánchez, and D. Blanco, “A Decision Analysis Approach to Extracorporeal Life Support”, 5th International Conference of the Decision Sciences Institute, Integrating Technology and Human Decisions: Global Bridges into the 21st Century, pp. 665-667, 1999. 

1997

  • Bielza, C., and P. P. Shenoy, “A Comparison of Decision Trees, Influence Diagrams and Valuation Networks for Asymmetric Decision Problems”, 6th International Workshop on Artificial Intelligence and Statistics, pp. 39-46, 1997. 
  • Bielza, C., P. Müller, and D. Ríos Insua, “Markov Chain Monte Carlo Methods for Decision Analysis”, 6th International Workshop on Artificial Intelligence and Statistics, pp. 31-38, 1997.