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Abstract. In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of
mining concept-drifting data streams. However, most of these approaches can only be applied to uni-dimensional classi-
fication problems where each input instance has to be assigned to a single output class variable. The problem of mining
multi-dimensional data streams, which includes multiple output class variables, is largely unexplored and only few stream-
ing multi-dimensional approaches have been recently introduced. In this paper, we propose a novel adaptive method, named
Locally Adaptive-MB-MBC (LA-MB-MBC), for mining streaming multi-dimensional data. To this end, we make use of
multi-dimensional Bayesian network classifiers (MBCs) as models. Basically, LA-MB-MBCmonitors the concept drift over time
using the average log-likelihood score and the Page-Hinkley test. Then, if a concept drift is detected, LA-MB-MBC adapts the
current MBC network locally around each changed node. An experimental study carried out using synthetic multi-dimensional
data streams shows the merits of the proposed method in terms of concept drift detection as well as classification performance.
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1. Introduction

Nowadays, with the rapid growth of information technology, huge flows of records are generated
and collected daily from a wide range of real-world applications, such as network monitoring, telecom-
munications data management, social networks, information filtering, fraud detection, etc. These flows
are defined as data streams. Contrary to finite stationary databases, data streams are characterized by
their concept-drifting aspect [37,39], which means that the learned concepts and/or the underlying data
distribution are not stable and may change over time. Moreover, data streams pose many challenges to
computing systems due to limited memory resources (i.e., the stream can not be fully stored in memory),
and time (i.e., the stream should be continuously processed and the learned classification model should
be ready at any time to be used for prediction).

In recent years, the field of mining concept-drifting data streams has received an increasing attention
and a plethora of approaches have been developed and deployed in several applications [1,5,11,15,17,
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39]. All proposed approaches have a main objective consisting of coping with the concept drift and
maintaining the classification model up-to-date along the continuous flows of data. They are usually
composed of a detection method to monitor the concept drift and an adaptation method used for updating
the classification model over time.

However, most of the work within this field has only been focused on mining uni-dimensional data
streams where each input instance has to be assigned to a single output class variable. The problem of
mining multi-dimensional data streams, where each instance has to be simultaneously associated with
multiple output class variables, remains largely unexplored and only few multi-dimensional streaming
methods have been introduced [23,30,33,40].

In this paper, we present a new method for mining multi-dimensional data streams based on multi-
dimensional Bayesian network classifiers (MBCs). The so-called Locally Adaptive-MB-MBC
(LA-MB-MBC) extends the stationary MB-MBC algorithm [6] to tackle the concept-drifting aspect of data
streams. Basically, LA-MB-MBC monitors the concept drift over time using the average log-likelihood
score and the Page-Hinkley test. Then, if a concept drift is detected, LA-MB-MBC adapts the current
MBC network locally around each changed node. An experimental study carried out using synthetic
multi-dimensional data streams shows the merits of the proposed adaptive method in terms of concept
drift detection and classification performance.

The remainder of this paper is organized as follows. Section 2 briefly defines the multi-dimensional
classification problem, then introduces multi-dimensional Bayesian network classifiers. Section 3 dis-
cusses the concept drift problem, and Section 4 reviews the related work on mining multi-dimensional
data streams. Next, Section 5 introduces the proposed method for change detection and local MBC adap-
tation. Sections 6 and 7 cover the experimental study presenting the used data, the evaluation metrics,
and a discussion on the obtained results. Finally, Section 8 rounds the paper off with some conclusions
and future works.

2. Background

2.1. Multi-dimensional classification

In the traditional and more popular task of uni-dimensional classification, each instance in the data
set is associated with a single class variable. However, in many real-world applications, more than one
class variable may be required. That is, each instance in the data set has to be associated with a set of
many different class variables at the same time. An example would be classifying movies at the online
internet movie database (IMDb). In this case, a given movie may be classified simultaneously into three
different categories, e.g. action, crime and drama. Additional examples may include a patient suffering
from multiple diseases, a text document belonging to several topics, a gene associated with multiple
functional classes, etc.

Hence, the multi-dimensional classification problem can be viewed as an extension of the uni-
dimensional classification problem where simultaneous prediction of a set of class variables is needed.
Formally, it consists of finding a function f that predicts for each input instance given by a vector of m
features x = (x1, . . . , xm), a vector of d class values c = (c1, . . . , cd), that is,

f : ΩX1
× . . .× ΩXm

−→ ΩC1
× . . .× ΩCd

x = (x1, . . . , xm) �−→ c = (c1, . . . , cd)
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where ΩXi
and ΩCj

denote the sample spaces of each feature variable Xi, for all i ∈ {1, . . . ,m}, and
each class variable Cj , for all j ∈ {1, . . . , d}, respectively. Note that, we consider that all class and
feature variables are discrete random variables such that |ΩXj

| and |ΩCj
| are greater than 1.

When |ΩCj
| = 2 for all j ∈ {1, . . . , d}, i.e., all class variables are binary, the multi-dimensional

classification problem is known as a multi-label classification problem [25,36,42]. A multi-label classi-
fication problem can be easily modeled as a multi-dimensional classification problem where each label
corresponds to a binary class variable. However, modeling a multi-dimensional classification problem,
that possibly includes non-binary class variables, as a multi-label classification problem may require a
transformation over the data set to meet multi-label framework requirements.

Since our proposed method is general and can be applied to classification problems where class vari-
ables are not necessarily binary, we opt to use, unless mentioned otherwise, the term multi-dimensional
classification as a more general concept.

2.2. Multi-dimensional Bayesian network classifiers

A Bayesian network [22,28] over a finite set U = {X1, . . . ,Xn}, n � 1, of discrete random variables
is a pair B = (G,×). G = (V,A) is a directed acyclic graph (DAG) whose vertices V correspond
to variables Xi and whose arcs A represent conditional dependence relationships between triplets of
variables. Θ is a set of parameters such that each of its components θxi|pa(xi) = P (xi|pa(xi)) represents
the conditional probability of each possible value xi of Xi given a set value pa(xi) of Pa(Xi), where
Pa(Xi) denotes the set of parents of Xi (nodes directed to Xi) in G. The set of parameters Θ is organized
in tables, referred to as conditional probability tables (CPTs). B defines a joint probability distribution
over U factorized according to structure G given by:

P (x1, . . . , xn) =

n∏
i=1

P (xi|pa(xi)) (1)

Two important definitions follow:

Definition 1. Two sets of variables X and Y are conditionally independent given some set of variables
Z, denoted as I(X,Y|Z), iff P (X|Y,Z) = P (X|Z) for any assignment of values x, y, z of X,Y,Z,
respectively, such that P (Z = z) > 0.

Definition 2. A Markov blanket of a variable X, denoted as MB(X), is a minimal set of variables
with the following property: I(X,S|MB(X)) holds for every variable subset S with no variables in
MB(X) ∪X.

In other words, MB(X) is a minimal set of variables conditioned by which X is conditionally indepen-
dent of all the remaining variables. Under the faithfulness assumption, ensuring that all the conditional
independencies in the data distribution are strictly those entailed by G, MB(X) consists of the union
of the set of parents, children, and parents of children (i.e., spouses) of X [29]. For instance, as shown
in Fig. 1, MB(X) = {A,B,C,D,E} which consists of the union of X parents {A,B}, its children
{C,D}, and the parent of its child node D, i.e., {E}.

A multi-dimensional Bayesian networks classifier (MBC) is a Bayesian network specially designed to
deal with the emerging problem of multi-dimensional classification.

Definition 3. An MBC [38] is a Bayesian network B = (G,×) where the structure G = (V,A) has a
restricted topology. The set of n vertices V is partitioned into two sets: VC = {C1, . . . , Cd}, d � 1, of
class variables and VX = {X1, . . . ,Xm},m � 1, of feature variables (d+m = n). The set of arcs A is
partitioned into three sets AC , AX and ACX , such that:
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Fig. 1. The Markov blanket of X denoted MB(X) con-
sists of the union of its parents {A,B}, its children
{C,D}, and the parent {E} of its child D.
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Fig. 2. An example of an MBC structure.

– AC ⊆ VC × VC is composed of the arcs between the class variables having a subgraph GC =
(VC , AC) – class subgraph – of G induced by VC .

– AX ⊆ VX × VX is composed of the arcs between the feature variables having a subgraph GX =
(VX , AX) – feature subgraph – of G induced by VX .

– ACX ⊆ VC × VX is composed of the arcs from the class variables to the feature variables having a
subgraph GCX = (V,ACX ) – bridge subgraph – of G induced by V [4].

Classification with an MBC under a 0–1 loss function is equivalent to solving the most probable
explanation (MPE) problem, which consists of finding the most likely instantiation of the vector of
class variables c∗ = (c∗1, . . . , c∗d) given an evidence about the input vector of feature variables x =
(x1, . . . , xm). Formally,

c∗ = (c∗1, . . . , c
∗
d) = arg max

c1,...,cd
p(C1 = c1, . . . , Cd = cd|x) (2)

Example 1. An example of an MBC structure is shown in Fig. 2. The class subgraph GC = ({C1,
. . . , C4}, AC) such that AC consists of the two arcs between the class variables C1, C2, and C3, the
feature subgraph GX = ({X1, . . . ,X8}, AX ) such that AX contains the three arcs between the feature
variables, and finally, the bridge subgraph GCX = ({C1, . . . , C4,X1, . . . ,X8}, ACX ) such that ACX is
composed of the eight arcs from the class variables to the feature variables. As an MPE problem, we
have

max
c1,...,c4

P (c1, . . . , c4|x) = max
c1,...,c4

P (c1|c2, c3)P (c2)P (c3)P (c4)

· P (x1|c2, x4)P (x2|c1, c2, x5)P (x3|c4)P (x4|c1)
· P (x5)P (x6|c3)P (x7|c4)P (x8|c4, x6)

3. Concept drift

In uni-dimensional data streams, concept drift refers to the changes in the joint probability distribution
P (x, c) which is the product of the class posterior distribution P (c|x) and the feature distribution P (x).
Therefore, three types of concept drift can be distinguished [17,37]: conditional change (also known as
real concept drift) if a change occurs in P (c|x); feature change (also known as virtual concept drift) if a
change occurs in P (x); and dual change if changes occur in both P (c|x) and P (x).

Depending on the rate (also known as the extent or the speed) of change, concept drift can be also
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categorized into either abrupt or gradual. An abrupt concept drift occurs at a specific time point by
suddenly switching from one concept to another. On the contrary, in a gradual concept drift, a new
concept is slowly introduced over an extended time period. An additional categorization is based on
whether the concept drift is local or global. A concept drift is said to be local when it only occurs
in some regions of the instance space (sub-spaces), and global when it occurs in the whole instance
space [12].

Several additional concept drift categorizations may be found in literature such as the one proposed
by Minku et al. [26] characterizing concept drifts according to different additional criteria, namely,
severity (severe if no instance maintains its target class in the new concept, or intersected otherwise),
frequency (periodic or non-periodic) and predictability (predictable or random). Concept drifts may be
also reoccurring if previously seen concepts reappear (generally at irregular time intervals) over time, or
novelties when some new variables or some of their respective states appear or disappear over time [16].

The same definitions and categorizations of uni-dimensional concept drift can be applied in the con-
text of multi-dimensional data streams. In fact, the feature change involving only a change in P (x)
is exactly the same; whereas, for the conditional change, we have now a vector of d class variables
C = (C1, . . . , Cd) instead of a single class variable C , i.e., the conditional change may occur in the dis-
tribution P (c|x). Moreover, as previously, the change is called dual when both feature and conditional
changes occur together. Furthermore, the multi-dimensional concept drift can be also categorized into
abrupt or gradual depending on the rate of change, and into local or global depending on whether it
occurs in some regions of the instance space or in the whole instance space, respectively.

Consequently, the main differences between the uni-dimensional and the multi-dimensional concept
drifts consist mainly of the changes that may occur in the distribution and the dependence relationships
between the class variables, as well as the distribution and the dependence relationships between each
class variable and the set of feature variables.

Besides these categorizations, and in the context of streaming multi-label classification, Read et
al. [33] discuss that concept drift may also involve a change in the label cardinality, that is, a change in
the average number of labels associated with each instance computed as LCard = 1/N

∑N
l=1

∑d
j=1 c

(l)
j

with c
(l)
j ∈ {0, 1}, where N denotes the total number of instances and d the number of labels (or binary

class variables).
In addition, Xioufis et al. [40] consider that a multi-label data stream contains separate multiple targets

(concepts) and each concept is likely to exhibit independently its own drift pattern. This assumption
allows to track the drift of each concept separately using for instance the binary relevance method [18].
In fact, binary relevance proceeds by decomposing the multi-label learning problem into d independent
binary classification problems, such that each binary classification problem aims to predict a single label
value. However, the main drawback of this assumption is the inability to deal with the correlations that
concepts may have with each other and which may drift over time.

It is important to note that the different presented types of drift are not exhaustive and the categoriza-
tions discussed here are not mutually exclusive. In our case, we particularly deal with a local concept
drift in multi-dimensional data streams. Moreover, as mentioned later in Section 6.1, we consider for the
empirical study different rates for local concept drifts, i.e., either abrupt or gradual.

4. Related work

In this section, we review the existing related works. All have been developed under the streaming
multi-label classification setting, and can be viewed as extension of stationary multi-label methods to
concept-drifting data streams.
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Qu et al. [30] propose an ensemble of improved binary relevance (MBR) taking into account the depen-
dency among labels. The basic idea is to add each classified label vector as a new feature participating
in the classification of the other related labels. To cope with concept drifts, Qu et al. use a dynamic clas-
sifier ensemble jointly with a weighted majority voting strategy. No drift detection method is employed
in MBR. In fact, the ensemble keeps a fixed number K of base classifiers, and is updated continuously
over time by adding new classifiers, trained on the recent data blocks, and discarding the oldest ones.
Naive Bayes, C4.5 decision tree algorithm, and support vector machines (SVM) are used as different
base classifiers to test the MBR method.

Xioufis et al. [40] tackle a special problem when dealing with multi-label data streams, namely class
imbalance, i.e., the skewness in the distribution of positive and negative instances for all or some labels.
In fact, each label in the stream may have more negative than positive instances, and some labels may
have much more positive instances than others. To deal with this problem, the authors propose a multiple
windows classifier (MWC) that maintains two windows of fixed size for each label: one for positive
instances and one for negative ones. The size Np of the positive windows is a parameter of the approach
and the size Nn of the negative windows is determined using the formula Nn = Np/r, where r is
another parameter of the approach, called distribution ratio. r has the role of balancing the distribution
of positive and negative instances in the union of the two windows. The authors assume an independent
concept drift for each label, and use a binary relevance method [18] with k-nearest neighbors (kNN) as
base classifier. No drift detection method is employed in MWC. Positive and negative windows of each
label are updated continuously over time by including new incoming instances and removing older ones.

Moreover, Kong and Yu [23] propose also an ensemble-based method for multi-label stream classifi-
cation. The idea is to use an ensemble of multiple random decision trees [41] where tree nodes are built
by means of random selected testing variables and spliting values. The so-called Streaming Multi-lAbel
Random Trees (SMART) algorithm does not include a change detection method. In fact, to handle con-
cept drifts in the stream, the authors simply use a fading function on each tree node to gradually reduce
the influence of historical data over time. The fading function consists of assigning to each old instance
with time stamp ti a weight w(t) = 2−(t−ti)/λ, where t is the current time, and λ is a parameter of the
approach, called fading factor, indicating the speed of the fading effects. The higher the value of λ, the
slower the weight of each instance will decay.

Finally, Read et al. [33] present a framework for generating synthetic multi-label data streams along
with a novel multi-label streaming classification ensemble method based on Hoeffding trees. Their
method, named EaHTPS , extends the single-label incremental Hoeffding tree (HT) classifier [10] by
using a multi-label definition of entropy and by training multi-label pruned sets (PS) at each leaf node of
the tree. To handle concept drifts, Read et al. use the ADWIN Bagging method [5] which consists of an
online bagging method extended with an adaptive sliding window (ADWIN) as a change detector. When
a concept drift is detected, the worst performing classifier of the ensemble of classifiers is replaced with
a new classifier. Read et al. also introduce BRa, EaBR, EaPS, HTa methods, that extend respectively
binary relevance (BR) [18], ensembles of BR (EBR) [32], ensembles of textttPS (EPS) [31], and multi-
label Hoeffding trees (HT) [8] stationary methods by including ADWIN to detect the potential concept
drifts.

The presented streaming multi-label methods are summarized in Table 1. Contrary to these methods,
which are all based on a multi-label setting, requiring all the class variables to be binary, our proposed
adaptive method has no constraints on the cardinalities of the class variables. Moreover, these methods
either do not present any drift detection method (for instance, MBR [30], MWC [40] and SMART [23]
approaches) or they use a drift detection method and keep updating an ensemble of classifiers over
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Table 1
Summary of streaming multi-label classification methods

Reference Method Base classifier Adaptation strategy
Qu et al. [30] Ensemble of improved Naive Bayes, Evolving ensemble.

binary relevance (MBR) C4.5, SVM No detection
Xioufis et al. [40] Multiple windows classifier (MWC) kNN Two windows of fixed size for each label.

No detection
Kong and Yu [23] Streaming multi-label Random tree Fading function.

random trees (SMART) No detection
Read et al. [33] Ensemble of multi-label Hoeffding tree Evolving ensemble.

Hoeffding trees with PS at the leaves Detection using the ADWIN algorithm
(EaHTPS), as well as BRa, EaBR,
EaPS, and HTa methods

time by replacing the worst performing classifier with a new one when a drift is detected (such as
EaHTPS [33] using ADWIN algorithm as a change detector). In both cases, the concept drift cannot be
detected locally, and the adaptation process is basically based on ensemble updating.

In our case, we only use a single model (i.e., MBC) and our proposed drift detection method performs
locally: it is based on monitoring the average local log-likelihood of each node of the MBC network
using the Page-Hinkley test. Being based on MBCs, our adaptive method presents also the merit of
explicitly modeling the probabilistic dependence relationships among all variables through the graphical
structure component.

5. Locally adaptive-MB-MBC method

Before providing more details about the proposed approach, let us introduce the following notation.
LetD = {D1,D2, . . . ,Ds, . . .} denote a multi-dimensional data stream that arrives over time in batches,
such that Ds = {(x(1), c(1)), . . . , (x(Ns), c(N

s))} denotes the multi-dimensional batch stream received
at step s, and containingN s instances. For each instance in the stream, the input vectorx = (x1, . . . , xm)
of m feature values is associated with an output vector c = (c1, . . . , cd) of d class values. For the sake of
simplicity, and regardless of being class or feature variable, we denote by Vi each variable in the MBC,
i = 1, . . . , n, such that n represents the total number of variables, i.e., n = d+m. Given an MBC learned
fromDs, denoted MBCs, and a new incoming batch streamDs+1, the adaptive learning problem consists
of firstly detecting possible concept drifts, then, if required, updating the current MBCs, as MBCs+1, to
best fit the new distribution of Ds+1.

In what follows, we start by presenting the proposed drift detection method in Section 5.1. Next, we
introduce the MBC adaptation method in Section 5.2.

5.1. Drift detection method

The objective here is to continuously process the batches of data streams and detect the local concept
drift when it occurs. As mentioned before, this local concept drift can also be either abrupt or gradual.
Our proposed detection method is based on the average local log-likelihood score and the Page-Hinkley
test, and is applied locally, i.e., to each variable in the MBC network.
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Fig. 3. The evolution of the average local log-likelihood values of four different class variables, namely C1, C2, C3, and C4.
(Colours are visible in the online version of the article; http://dx.doi.org/10.3233/IDA-160804)

5.1.1. The average local log-likelihood score
The likelihood measures the probability of a data setDs given the current multi-dimensional Bayesian

network classifier. For convenience in the calculations, the logarithm of the likelihood is usually used:

LLs = log P (Ds|θs) = log

Ns∏
l=1

n∏
i=1

P (v
(l)
i |pa(vi)(l),θs) =

n∑
i=1

qi∑
j=1

ri∑
k=1

log(θsijk)
Ns

ijk (3)

where v(l)i ,pa(vi)
(l) are respectively the values of variable Vi and its parent set Pa(Vi) in the lth instance

in Ds. ri denotes the number of possible states of Vi, and qi denotes the number of possible configura-
tions that the parent set Pa(Vi) can take. N s

ijk is the number of instances in Ds where variable Vi takes
its kth value and Pa(Vi) takes its jth configuration.

We consider then the average log-likelihood score in Ds, which is equal to the original log-likelihood
score LLs divided by the total number of instances N s. This in fact will allow us to compare the like-
lihood of an MBC network based on different batch streams that may present different numbers of
instances. Hence, using the maximum likelihood estimation for the parameters, θ̂sijk =

Ns
ijk

Ns
ij

where
N s

ij =
∑ri

k=1N
s
ijk for every i, . . . , n, the average log-likelihood can be expressed as follows:

LL
s
=

n∑
i=1

1

N s

qi∑
j=1

ri∑
k=1

N s
ijk log

N s
ijk

N s
ij

(4)

Finally, since the change should be monitored on each variable, we use the average local log-likelihood
of each variable Vi in the network expressed as:

ll
s
i =

1

N s

qi∑
j=1

ri∑
k=1

N s
ijk log

N s
ijk

N s
ij

(5)

Example 2. To illustrate the key idea of using the average local log-likelihood to monitor the concept
drift, we plot, in Fig. 3, the evolution of the average local log-likelihood values of four different class
variables, namely, C1, C2, C3, and C4. As it can be observed, the average local log-likelihood values for
C2 and C3 are stable over time, which means that there is no concept drift for both variables. However,
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abrupt and gradual concept drifts could be detected for variables C1 and C4, respectively, as their cor-
responding average local log-likelihood values drop at block 10. In the next section, we will introduce
how to detect this drift point using as input the average local log-likelihood values of each variable.

5.1.2. Change point detection
In recent years, several change detection methods have been proposed to determine the point at which

the concept drift occurs. As pointed out in [16], these methods can be categorized into four groups: i)
methods based on sequential analysis such as the sequential probability ratio test; ii) methods based
on control charts or statistical process control; iii) methods based on monitoring distributions on two
different time-windows such as the ADWIN algorithm; and iv) contextual methods such as the splice
system. More details about these methods and their references can be found in [16], Section 3.2.

In this work, In order to detect the change point, we make use of the Page-Hinkley (PH) test [20,27].
The PH test is a sequential analysis technique commonly used for change detection in signal processing,
and has been proven to be appropriate for detecting concept drifts in data streams [34].

In particular, we apply the PH test in order to determine whether a sequence of average local log-
likelihood values of a variable Vi can be attributed to a single statistical law (null hypothesis); or it
demonstrates a change in the statistical law underlying these values (change point). Let ll1i , . . . , ll

s
i ,

denote the average local log-likelihood values for variavle Vi computed with Eq. (5) using the first batch
stream D1 till the last received one Ds, respectively. To test the above hypothesis, the PH test considers
first a cumulative variable CUMs

i , defined as the cumulated difference between the obtained average
local log-likelihood values and their mean till the current moment (i.e., the last batch Ds):

CUMs
i =

s∑
t=1

(ll
t
i − mean

ll
t

i
− δ) (6)

where mean
ll

t

i
= 1

t

∑t
h=1 ll

h
i denotes the mean of ll1i , . . . , ll

t
i values, and δ is a positive tolerance pa-

rameter corresponding to the magnitude of changes which are allowed. The maximum value MAXs
i of

variable CUMt
i for t = 1, . . . , s, is then computed:

MAXs
i = max

{
CUMt

i, t = 1, . . . , s
}

(7)

Next, the PH value is computed as the difference between MAXs
i and CUMs

i :

PHs
i = MAXs

i − CUMs
i (8)

When this difference is greater than a given threshold λ (i.e., PHs
i > λ), the null hypothesis is rejected

and the PH test alarms a change, otherwise, no change is signaled. Specifically, depending on the result
of this test, two states can be distinguished:

– If PHs
i � λ then there is no concept drift: the distribution of the average local log-likelihood values

is stable. The new batch Ds is deemed to come from the same distribution as the previous data set
of instances.

– If PHs
i > λ then a concept drift is considered to have occurred: the distribution of the average local

log-likelihood values is drifting. The new batch Ds is deemed to come from a different distribution
than the previous data set of instances.

The threshold λ is a parameter allowing to control the rate of false alarms. In general, small λ values
may increase the number of false alarms, whereas higher λ values may lead to a fewer false alarms but
may rise at the same time the risk of missing some concept drifts.
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Note that, the PH test is designed here to detect decreases in the log-likelihood, since an increase in
the log-likelihood score informs that the current MBC network still fits well the new data and thus no
adaptation is required. In our case, each local PH test value, PHs

i , allows us to check if a drift occurs or
not at each considered variable Vi. This in fact will locally specify where (i.e., for which set of variables)
the concept drift occurs. Afterwards, the challenge is to locally update the MBC structure, i.e., update
only the parts that are in conflict with the the new incoming batch stream without re-learning the whole
MBC from scratch.

5.2. Local MBC adaptation

The objective here is to locally update the MBC network over time, so that if a concept drift occurs,
only the changed parts in the current MBC are re-learned from the new incoming batch stream and not
the whole network. This presents two main challenges: First, how to locally detect the changes, and
second how to update the current MBC.

To deal with these challenges, we propose the Locally Adaptive-MB-MBCmethod, outlined by
Algorithm 1. Given the current network MBCs, the new incoming batch stream Ds+1, and the PH test
parameters δ and λ, the local change detection firstly computes the average log-likelihood ll

s+1
i of each

variable Vi using the new incoming batch stream Ds+1 (step 4), then computes the corresponding value
PHs+1

i (step 5). Next, if this PHs+1
i value is higher than λ, then variable Vi is added to the set of nodes to

be changed (steps 6 to 8). Subsequently, whenever the resulting set of ChangedNodes is not empty, i.e., a
drift is detected, then the UpdateMBC function, outlined by Algorithm 2, is invoked to locally update the
current MBCs network (step 11); otherwise, we conclude that no drift is detected and the MBC network
is kept unchanged (step 13).

Algorithm 1 Locally Adaptive-MB-MBC

1. Input: Current MBCs, new multi-dimensional data stream Ds+1, δ, λ
2. ChangedNodes = ∅
3. for every variable Vi do
4. Compute the average local log-likelihood ll

s+1
i using Eq. (5)

5. Compute the local PH test, PHs+1
i

6. if PHs+1
i > λ then

7. ChangedNodes← ChangedNodes∪ {Vi}
8. end if
9. end for

10. if ChangedNodes 	= ∅ then
11. MBCs+1 ← UpdateMBC(ChangedNodes,MBCs,Ds+1,PCs,MBs)
12. else
13. MBCs+1 ← MBCs, i.e., no drift is detected
14. end if
15. return MBCs+1

Before introducing the UpdateMBC algorithm, note that since the local log-likelihood computes the
probability of each variable Vi given the set of its parents in the MBC structure, then a detected change
for a variable Vi informs that the set of parents of the variable Vi has changed due to either the removal
of some existing parents or the inclusion of new parents:
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– The removal of an existing parent means that this parent was strongly relevant to Vi given Ds, and
becomes either weakly relevant or irrelevant to Vi given Ds+1. In other words, this parent was a
member of the parent set, or more broadly a member of the parents-children set of Vi, but with
respect to Ds+1, it does not pertain to the parents-children set of Vi.

– The inclusion of a new parent means that this parent was either weakly relevant or irrelevant to Vi

given Ds, and becomes strongly relevant to Vi given Ds+1. In other words, this parent was not a
member of the parents-children set of Vi, but with respect to Ds+1, it should be added as a new
member of the parents-children set of Vi.

Recall that, variables are defined to be strongly relevant if they contain information about Vi not found
in all other remaining variables. That is, the strongly relevant variables are the members of the Markov
blanket of Vi, and thereby, all the members in the parents-children set of Vi are also strongly relevant to
Vi. On the other hand, variables are said to be weakly relevant if they are informative but redundant, i.e.,
they consist of all the variables with an undirected path to Vi which are not themselves members of the
Markov blanket nor the parents-children set of Vi. Finally, variables are defined as irrelevant if they are
not informative, and in this case, they consist of variables with no undirected path to Vi [2,21].

Therefore, the intuition behind UpdateMBC algorithm, is basically to firstly learn with Ds+1 the new
parents-children set of each changed node using the HITON-PC algorithm [2,3], determine the sets of
its old and new adjacent nodes, and then locally update the MBC structure.

UpdateMBC is outlined by Algorithm 2. It takes as input the set of changed nodes, the current net-
work MBCs, the new incoming batch stream Ds+1, the parents-children sets of all variables PCs, and
the Markov blanket sets of all class variables MBs. For each variable Vi in the set of changed nodes,
UpdateMBC initially learns from Ds+1 the new parents-children set of Vi, PC(Vi)

s+1, using HITON-
PC algorithm (step 3). Then, it determines the set of its old adjacent nodes, i.e.,

{
PC(Vi)

s \PC(Vi)
s+1

}
(step 4). The variables included in this set are variables that pertained to PC(Vi)

s but do not pertain any-
more to PC(Vi)

s+1, which means that they represent the set of variables that were strongly relevant to Vi

and have become either weakly relevant or irrelevant to Vi. In this case, for each variable OldAdj belong-
ing to this set, the arc between it and Vi is removed from MBCs+1 (step 5), then, the parents-children
and Markov blanket sets are updated accordingly. Specifically, the following rules are performed:

– Remove Vi from the parents-children set of OldAdj (step 6): since the arc between Vi and OldAdj
was removed, Vi does not pertain anymore to the parents-children set of OldAdj.

– If the old adjacent node OldAdj is a class variable, then update its Markov blanket MB(OldAdj)s+1

by removing from it the changed node Vi and its parents that do not belong to the parents-children
set PC(OldAdj)s+1 of OldAdj (steps 7 to 9).

– If the changed node Vi is a class variable, then update its Markov blanket MB(Vi)
s+1 by removing

from it the old adjacent node OldAdj and its parents that do not belong to the parents-children set
of Vi, PC(Vi)

s+1 (steps 10 to 12).
– Update the Markov blanket of each class variable that belongs to the parent set of Vi, without being

a parent nor a child of OldAdj, by removing from it the old adjacent node OldAdj (steps 13 to 15).
Subsequently, UpdateMBC determines the set of the new adjacent nodes of the changed node Vi, de-

noted as
{

PC(Vi)
s+1 \PC(Vi)

s
}

(step 17). The variables included in this set are variables that belong to
PC(Vi)

s+1 but they were not previously in PC(Vi)
s, which means that they represent the set of variables

that were weakly relevant or irrelevant to Vi and become strongly relevant to Vi. Hence, new depen-
dence relationships should be inserted between those variables and Vi verifying at each insertion that
no cycles are introduced. In this case, a new arc is inserted from each new adjacent node NewAdj to
Vi (step 18), then the parents-children and Markov blanket sets are updated accordingly. The following
rules are performed:
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Algorithm 2 UpdateMBC(ChangedNodes,MBCs,Ds+1,PCs,MBs)

1. Initialization: MBCs+1 ← MBCs; PCs+1 ← PCs; MBs+1 ← MBs

2. for every variable Vi ∈ ChangedNodes do
3. Learn PC(Vi)

s+1 ← HITON-PC(Vi)
#Determine the set of the old adjacent nodes of the changed node Vi

4. for every variable OldAdj ∈ {
PC(Vi)

s \ PC(Vi)
s+1

}
do

5. Remove the arc between OldAdj and Vi from MBCs+1

6. PC(OldAdj)s+1 ← PC(OldAdj)s+1 \ {Vi}
7. if OldAdj ∈ VC then
8. MB(OldAdj)s+1 ← MB(OldAdj)s+1 \ {Vi ∪ {Pa(Vi)

s+1 \ PC(OldAdj)s+1}}
9. end if

10. if Vi ∈ VC then
11. MB(Vi)

s+1 ← MB(Vi)
s+1 \ {OldAdj ∪ {Pa(OldAdj)s+1 \ PC(Vi)

s+1}}
12. end if
13. for every class H ∈ {

Pa(Vi)
s+1 \ PC(OldAdj)s+1

}
do

14. MB(H)s+1 ← MB(H)s+1 \ {OldAdj}
15. end for
16. end for

#Determine the set of the new adjacent nodes of the changed node Vi

17. for every variable NewAdj ∈ {
PC(Vi)

s+1 \ PC(Vi)
s
}

do
18. Insert an arc from NewAdj to Vi in MBCs+1

19. PC(NewAdj)s+1 ← PC(NewAdj)s+1 ∪ {Vi}
20. if NewAdj ∈ VC then
21. MB(NewAdj)s+1 ← MB(NewAdj)s+1 ∪ {Vi ∪Pa(Vi)

s+1}
22. end if
23. if Vi ∈ VC then
24. MB(Vi)

s+1 ← MB(Vi)
s+1 ∪ {NewAdj ∪Pa(NewAdj)s+1}

25. end if
26. for every class H ∈ {

Pa(Vi)
s+1 \ {NewAdj ∪ PC(NewAdj)s+1}} do

27. MB(H)s+1 ← MB(H)s+1 ∪ {NewAdj}
28. end for
29. end for
30. end for
31. Learn from Ds+1 new CPTs for nodes that have got a new parent set in MBCs+1

32. return MBCs+1; PCs+1; MBs+1

– Add Vi to the parents-children set of NewAdj (step 19): since an arc was inserted between Vi and
NewAdj, Vi becomes a member of the parents-children set of NewAdj.

– If the new adjacent node NewAdj is a class variable, then update its Markov blanket MB(NewAdj)s+1

by adding to it the changed node Vi as well as its parent set Pa(Vi) (steps 20 to 22).
– If the changed node Vi is a class, then update its Markov blanket MB(Vi)

s+1 by adding to it NewAdj
and its parent set Pa(NewAdj) (steps 23 to 25).

– Update the Markov blanket of each class variable that belongs to the parent set of Vi, without being
a parent nor a child NewAdj, by adding to it the new adjacent node NewAdj (steps 26 to 28).
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Table 2
PCs and MBs sets for the MBC structure shown in Fig. 2

PCs MBs

PC(C1)
s = {C2, C3, X2, X4} MB(C1)

s = {C2, C3, X2, X4, X5}
PC(C2)

s = {C1, X1, X2} MB(C2)
s = {C1, C3, X1, X2, X4, X5}

PC(C3)
s = {C1, X6} MB(C3)

s = {C1, C2, X6}
PC(C4)

s = {X3, X7, X8} MB(C4)
s = {X3, X7, X8, X6}

PC(X1)
s = {C2, X4}

PC(X2)
s = {C1, C2, X5}

PC(X3)
s = {C4}

PC(X4)
s = {C1, X1}

PC(X5)
s = {X2}

PC(X6)
s = {C3, X8}

PC(X7)
s = {C4}

PC(X8)
s = {C4, X6}

X5X1

C2

X2

C3C1 C4

X3 X6X4 X7 X8

Fig. 4. Example of an MBC structure including structural changes in comparison with the initial MBC structure in Fig. 2. Nodes
C1, C4, X2, and X5, represented in dashed line, are characterized as changed nodes.

Finally, new conditional probability tables (CPTs) are learnt from Ds+1 for all the nodes that have got
a new parent set in MBCs+1 (step 31), and then the updated MBC network MBCs+1, the sets PCs+1 and
MBs+1 are returned in step 32.

Note here that, all variables that belong to both PC(Vi)
s and PC(Vi)

s+1 of a changed node Vi do not
trigger any kind of change. In fact, these variables were strongly relevant to Vi and are still strongly
relevant to Vi, so that the dependence relationships between them and Vi remain the same. Moreover, the
order of processing the changed nodes does not affect the final result, that is, independently of the order,
the updated MBC network MBCs+1 and the sets PCs+1 and MBs+1 will be the same by the end of the
UpdateMBC algorithm. This is guaranteed because the identification of the old and new adjacent nodes
is performed independently for each changed node, and thereby, it is not affected by the order nor by the
results of other nodes. The updating process of PC and MB sets is also ensured via simple operations
such as removing or adding variables, and hence, the order of variable removal or addition will not affect
the final sets.

Example 3. To illustrate the Locally Adaptive-MB-MBC algorithm, let us first reconsider the
structure shown in Fig. 2 as an example of an MBCs structure learnt from a batch stream Ds using
the MB-MBC algorithm [6]. Then, let assume that we receive afterwards a new batch stream Ds+1

generated from the MBCs+1 structure shown in Fig. 4. Given both MBCs and Ds+1, the Locally
Adaptive-MB-MBC algorithm starts by computing the average log-likelihood and the PH test for
each variable in MBCs. A change should be signaled for variables C1, C4, X2, and X5 by Algorithm 1,
i.e., ChangedNodes = {C1, C4,X2,X5}. Then, the MBC network should be locally updated via the
UpdateMBC algorithm (Algorithm 2).
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X5

C2

X2

C3C1

X4

C2

X2

C1

X4 X7

(a) (b)

Fig. 5. Markov blanket of node C1 (a) before and (b) after change.

C4

X3 X6 X7 X8

C3 C4

X3 X6 X7 X8

(a) (b)

Fig. 6. Markov blanket of node C4 (a) before and (b) after change.

The UpdateMBC algorithm updates the local structure around each changed node, then updates ac-
cordingly the parents-children and Markov blanket sets. Note that UpdateMBC takes as input the current
network MBCs, the set of ChangedNodes, the new incoming batch stream Ds+1, as well as the current
parents-children sets of all the variables PCs, and the current Markov blankets sets of all the class vari-
ables MBs, all represented in Table 2.

In what follows, we present a trace of UpdateMBC algorithm for each variable in the ChangedNodes
set:

– The changed node C1 (see Fig. 4): Firstly, we determine the new parents-children set of C1 given
Ds+1 using the HITON-PC algorithm (i.e., step 3 in Algorithm 2). We assume that HITON-PC de-
tects the new parents-children set of C1 correctly, so we should have PC(C1)

s+1 = {C2,X2,X4}.
Next, we determine the set of old and new adjacent nodes for C1.
∗ For the old adjacent nodes, the steps 5 to 15 in Algorithm 2 would be performed. In this case, we

have PC(C1)
s \ PC(C1)

s+1 = {C3}, which means that C1 has only C3 as an old adjacent node.
Thus, we start by removing the arc between C1 and C3 (step 5); update the parents-children set of
C3 as follows: PC(C3)

s+1 = PC(C3)
s+1 \ {C1} = {X6} (step 6); then, since C3 belongs to VC ,

we proceed by updating also the Markov blanket of C3 as follows: MB(C3)
s+1 = MB(C3)

s+1 \{
C1 ∪ {Pa(C1)

s+1 \ PC(C3)
s+1}}. As it can be seen, we have Pa(C1)

s+1 \ PC(C3)
s+1 =

{C2}, hence, C2 should be removed from the Markov blanket of C3, which results finally in:
MB(C3)

s+1 = MB(C3)
s+1 \ {C1, C2} = {X6} (steps 7 to 9).

Moreover, since C1 belongs to VC , we update as well the Markov blanket of C1, i.e.,
MB(C1)

s+1 = MB(C1)
s+1 \ {C3 ∪ {Pa(C3)

s+1 \ PC(C1)
s+1}} = {C2,X2,X4,X5} (steps

10 to 12).
Finally, we update the Markov blanket set of each class parent of C1 (steps 13 to 15). In our
case, we have only C2 as parent of C1, which does not pertain to PC(C3), thus C3 should
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X5

C2

X2

C1

X2

C1

X7

(a) (b)

Fig. 7. Parents-children set of node X2 (a) before and (b)
after change.

X5X2 X5

C3

(a) (b)

Fig. 8. Parents-children set of node X5 (a) before and (b)
after change.

be removed from the Markov blanket of C2, that is, MB(C2)
s+1 = MB(C2)

s+1 \ {C3} =
{C1,X1,X2,X4,X5}.

∗ For the new adjacent nodes, we have PC(C1)
s+1 \ PC(C1)

s = ∅. Thus, no new dependence
relationships must be added for C1.

– The changed node C4 (see Fig. 6): The first step is to determine the new parents-children set of C4

given Ds+1 and using the HITON-PC algorithm. As previously, we assume that HITON-PC detects
the new parents-children set of C4 correctly, so we should have PC(C4)

s+1 = {C3,X3,X7,X8}.
∗ Next, we determine the set of old adjacent nodes, which in our case is empty, i.e, PC(C4)

s \
PC(C4)

s+1 = ∅.
∗ Then, the set of new adjacent nodes which is equal to PC(C4)

s+1 \ PC(C4)
s = {C3}. Conse-

quently, we insert an arc from C3 to C4 (step 18), we update PC(C3)
s+1 = PC(C3)

s+1∪{C4} =
{C4,X6} (step 19), and MB(C3)

s+1 = MB(C3)
s+1∪{C4∪Pa(C4)

s+1} = {C4,X6} (step 20 to
22). Similarly, update the Markov blanket set MB(C4)

s+1 = MB(C4)
s+1∪{C3∪Pa(C3)

s+1} =
{C3,X3,X7,X8,X6} (steps 23 to 25). C4 has no more parents except C3, so steps 26-28 in the
UpdateMBC algorithm are not applied in this case.

– The changed node X2 (see Fig. 7): As previously, the first step is to determine the new parents-
children set of X2 given Ds+1 and using the HITON-PC algorithm. Assuming that HITON-PC
detects the new parents-children set of X2 correctly, we should have PC(X2)

s+1 = {C1,X7}.
∗ Next, given that PC(X2)

s = {C1, C2,X5}, the set of old adjacent nodes is determined as
PC(X2)

s \ PC(X2)
s+1 = {C2,X5}.

For the first old adjacent node C2, we remove the arc between C2 and X2, we update
PC(C2)

s+1 = PC(C2)
s+1 \ {X2} = {C1,X1}, and we update MB(C2)

s+1 = MB(C2)
s+1 \

{X2 ∪ {Pa(X2)
s+1 \ PC(C2)

s+1}}. Here X2 has two parents namely C1 and X5 (in fact X5

is not removed yet from the set of parents of X2 because we start by processing the old adja-
cent variable C2), and since C1 pertains to PC(C2)

s+1, the only variables to be removed from
MB(C2)

s+1 are then X2 and X5, i.e., MB(C2)
s+1 = {C1,X1,X4}.

For the second old adjacent node X5, we remove the arc between X5 and X2, we update
PC(X5)

s+1 = PC(X5)
s+1 \ {X2} = ∅, then update the Markov blanket set for every class

variable of X2 that does not pertain to PC(X5)
s+1. In our case, X2 has only C1 as a class par-

ent (because both C2 and X5 have been already removed), so its Markov blanket is modified as
follows MB(C1)

s+1 = MB(C1)
s+1 \ {X5} = {C2,X2,X4}.

∗ For the new adjacent nodes, we have PC(X2)
s+1 \ PC(X2)

s = {X7}. Thus, we insert an arc
from X7 to X2, update PC(X7)

s+1 = PC(X7)
s+1 ∪ {X2} = {C4,X2}, then update the Markov

blanket set for every class variable of X2 that does not pertain to PC(X7)
s+1. In our case, X2

has only C1 as a class parent, which is different from X7 and not pertaining to PC(X7), so its
Markov blanket is modified as follows MB(C1)

s+1 = MB(C1)
s+1 ∪ {X7} = {C2,X2,X4,X7}.
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– The changed node X5 (see Fig. 8): The first step is to determine the new parents-children set of
X5 given Ds+1 and using the HITON-PC algorithm. Assuming that HITON-PC detects the new
parents-children set of X5 correctly, we obtain PC(X5)

s+1 = {C3}.
∗ Then, given that PC(X5)

s = {X2}, we determine first the set of old adjacent nodes PC(X5)
s \

PC(X5)
s+1 = {X2}. Since the changed variable X2 has been processed before the changed

node X5, we can see that the arc between these two variables has been already removed during
the previous phase. Moreover, X5 has been already removed from PC(X2)

s+1, so there is no
change for PC(X2)

s+1 = {C1,X7}. X5 at this step has no class parents, so steps 13–15 in the
UpdateMBC algorithm are not applied in this case.

∗ For the new adjacent nodes, we have PC(X5)
s+1\PC(X5)

s = {C3}. Thus, we insert an arc from
C3 to X5, update PC(C3)

s+1 = PC(C3)
s+1 ∪ {X5} = {C4,X5,X6}, and update its Markov

blanket set MB(C3)
s+1 = MB(C3)

s+1 ∪ {X5} = {C4,X5,X6}. X5 is not a class variable and
has no more class parents except C3, so no more changes have to be considered.

Note finally that, the changes performed on the local structure of each changed node lead as well to
the changes of the PC and MB sets of some adjacent nodes such as, in our case, those of variables C2, C3

and X7. However, some other variables do not present any change and their PC sets are kept the same,
namely, X1,X3,X4,X6, and X8. In addition, the order of processing the changed variables affects the
order of the execution of some operations, however it does not affect the final result.

6. Experimental design

6.1. Data sets

We will use the following data streams:
– Synthetic multi-dimensional data streams: We randomly generated a sequence of five MBC net-

works, such that the first MBC network is randomly defined on a set of d = 5 class variables and
m = 10 feature variables. Then, each subsequent MBC network is obtained by randomly changing
the dependence relationships around a percentage p of nodes with respect to the preceding MBC
network in the sequence. Depending on parameter p, we set three different configurations to test
different rates of concept drift:
∗ Configuration 1: No concept drift (p = 0%). In this case, the same MBC network is used to

sample the total number of instances in the sequence. This aims to generate a stationary data
stream and allows us to verify the resilience of the proposed algorithm to false alarms.

∗ Configuration 2: Gradual concept drift (p = 20%). The percentage of changed nodes between
each consecutive MBC networks is equal to p = 20%. For each selected changed node, its parent
set is modified by removing the existing parents and randomly adding new ones. For the parame-
ters, new CPTs are randomly generated for the set of changed nodes presenting new parent sets,
whereas the CPTs of the non-changed nodes are kept the same as the preceding MBC.

∗ Configuration 3: Abrupt concept drift (p = 50%). Similar to configuration 2, but we fixed the
percentage of changed nodes between each consecutive MBC networks to p = 50%.

Afterwards, for each configuration, 5 000 instances are randomly sampled from each MBC network
in the sequence, using the probabilistic logic sampling method [19], then concatenated to form a
data stream of 25 000 instances.
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– SynT-drift data stream provided by Read et al. [33]: In order to compare our approach against
existing multi-label stream classification methods (see Section 4), namely, BRa, EaBR, EaHTPS ,
EaPS, HTa, MBR, and MWC, we test our proposed adaptive methods on SynT-drift.
SynT-drift is a multi-label synthetic data stream including 1 000 000 instances with d = 8 binary
class variables and m = 30 binary feature variables. It is sampled using the random tree generator
proposed by Domingos and Hulten [10], that constructs a decision tree by choosing attributes at
random to split, and assigning a random class label to each leaf. Once the tree is built, new examples
are generated by assigning uniformly random values to attributes which then determine the class
label via the tree.
Read et al. [33] included three concept drifts in SynT-drift of varying type, magnitude and extent. In
the first drift, they changed only 10% of label dependencies. In the second drift, the underlying con-
cept changes and more labels are associated on average with each instance (i.e., the label cardinality
LCard changes from 1.8 to 3.0), and in the third drift, 20% of label dependencies change.

6.2. Evaluation metrics

The synthetic data streams are processed by windows of instances, and the prequential setting [9,14]
is used to evaluate the predictive performance of the MBC network on each window. In this setting, each
incoming window is used for testing the MBC network before it is used for training, in such a way that
the MBC network is always tested on instances that have not been seen before. We used the following
metrics in order to assess the performance of the proposed adaptive method:

– Mean accuracy over the d class variables. It is defined as a class-based measure where the accuracy
is calculated separately for each class variable, then averaged across all the class variables:

Accm =
1

d

d∑
i=1

1

N s

Ns∑
l=1

δ(ĉli, cli) (9)

where N s is the size of the testing data set, ĉli denotes the Ci class value predicted by the multi-
dimensional classifier for sample l, and cli denotes its corresponding true value. δ(ĉli, cli) = 1 if
the predicted and true class values are equal, i.e., ĉli = cli, and δ(ĉli, cli) = 0 otherwise.

– Global accuracy over the d-dimensional class variable (also known as exact match [33]). It is con-
sidered as an instance-based measure where the accuracy is calculated separately for each instance
in the testing data set, then averaged across all the instances:

Accg =
1

N s

Ns∑
l=1

δ(ĉl, cl) (10)

In this more strict case, the (d-dimensional) vector of predicted classes ĉl is compared to the vector
of true classes cl, so that we have δ(ĉl, cl) = 1 if both vectors are equal in all their components,
i.e., ĉl = cl, and δ(ĉl, cl) = 0 otherwise.
Note that for experiments on SynT-drift data stream, the KLDiv and SHD evaluation are omitted
since we do not have an original MBC network for this data. Moreover, as reported in [33], we
compute the subset accuracy instead of the mean accuracy:

– Subset accuracy: This is an instance-based measure defined as a trade-off between the mean accu-
racy (which tends to be overly lenient) and the global accuracy (which tends to be overly strict). It
alleviates the very strict global accuracy measure by taking into account the partial correctness of
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the predicted class values and is computed as:

Accsubset =
1

N

N∑
l=1

|ĉl ∩ cl|
|ĉl ∪ cl| (11)

– Kullback-Leibler Divergence (KLDiv) [24]: It measures the divergence between the learned MBC
networks and the original ones. The lower the KLDiv values, the better the quality of the learning
algorithm.

– Structural Hamming Distance (SHD) [35]: It compares the structure of the learned and the original
MBC networks, and is defined as the number of operations required to make two completed partially
DAGs (CPDAGs) match. The operations are add or delete an undirected edge, and add, delete, or
reverse the orientation of an edge. Each of these operations is penalized with the same strength by
increasing the SHD by 1. In our case, since all learned and original MBCs are DAGs, we build first
the CPDAGs of both learned and original MBC DAGs using the DAG-to-CPDAG algorithm [7],
then we compute the SHD metric. The lower the resulting SHD value is, the better the algorithm
performed.

– Running time: It reports the cumulative learning plus testing times in seconds.

7. Experimental results

For the first set of experiments, carried out using 15 variables (5 class variables with 3 possible values
each, and 10 binary feature variables), we used the probabilistic logic sampling method [19] to randomly
sample five different data streams for each configuration (i.e., for each p = 0%, p = 20% and p = 50%).
Each generated data stream includes a total number of 25 000 instances.

For the sake of comparison, we consider here the Globally Adaptive-MB-MBC (GA-MB-MBC)
which is also based on the MB-MBC algorithm [6] but differs from LA-MB-MBC by dealing globally
with concept drift, that is, it learns the whole MBCs network from scratch whenever a change is detected.
Specifically, GA-MB-MBC, outlined in Algorithm 3, takes as input the current network MBCs, the new
incoming batch stream Ds+1, and the PH test parameters δ and λ. It starts by computing the average
global log-likelihood LL

s+1 using Eq. (4) (step 2), and the PH test value PHs+1 for the whole MBC
network (step 3). Next, if PHs+1 is higher than λ, then a new network MBCs+1 is learned from Ds+1

using the MB-MBC algorithm (step 5). Otherwise, i.e., PHs � λ, the MBC network is kept unchanged
(step 7).

Algorithm 3 Globally Adaptive-MB-MBC

1. Input: Current MBCs, new multi-dimensional data stream Ds+1, δ, λ
2. Compute the global average log-likelihood LL

s+1 using Eq. (4)
3. Compute PHs+1

4. if PHs+1 > λ then
5. Learn a new network MBCs+1 from Ds+1 using the MB-MBC algorithm.
6. else
7. MBCs+1 ←MBCs, i.e., no drift is detected
8. end if
9. return MBCs+1
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Table 3
Experimental results (mean ± std. dev.) over synthetic data
with p = 0%. Symbol • represents statistically significantly
better values

LA-MB-MBC GA-MB-MBC

λ = 1, block = 400
Mean accuracy 0.513 ± 0.041 0.524 ± 0.037
Global accuracy 0.066 ± 0.020 0.074 ± 0.012
SHD 23.926 ± 5.798 19.432 ± 4.731•
KLDiv 1.017 ± 0.295 0.836 ± 0.127
Running time 1182.466 ± 61.454 1208.019 ± 168.250
λ = 1, block = 700
Mean accuracy 0.529 ± 0.034 0.530 ± 0.036
Global accuracy 0.076 ± 0.020 0.081 ± 0.014
SHD 18.577 ± 6.017 19.411 ± 6.368
KLDiv 0.738 ± 0.163 0.642 ± 0.137
Running time 1256.061 ± 68.628 1226.992 ± 145.795
λ = 1, block = 1000
Mean accuracy 0.532 ± 0.033 0.538 ± 0.032
Global accuracy 0.081 ± 0.011 0.088 ± 0.011•
SHD 20.576 ± 6.730 22.272 ± 7.752
KLDiv 0.614 ± 0.172 0.561 ± 0.123
Running time 1311.709 ± 189.934 1369.942 ± 236.678
λ = 1, block = 2000
Mean accuracy 0.535 ± 0.030 0.536 ± 0.030
Global accuracy 0.085 ± 0.008 0.088 ± 0.011
SHD 21.400 ± 8.118 22.900 ± 7.736
KLDiv 0.544 ± 0.242 0.465 ± 0.183
Running time 1294.821 ± 173.761 1437.549 ± 163.353
λ = 5, block = 1000
Mean accuracy 0.533 ± 0.034 0.535 ± 0.035
Global accuracy 0.082 ± 0.011 0.086 ± 0.012
SHD 20.000 ± 5.712 21.688 ± 8.381
KLDiv 0.632 ± 0.176 0.584 ± 0.124
Running time 1286.319 ± 203.174 1327.425 ± 284.478
λ = 10, block = 1000
Mean accuracy 0.533 ± 0.035 0.533 ± 0.034
Global accuracy 0.081 ± 0.011 0.084 ± 0.013
SHD 20.232 ± 5.137 22.352 ± 7.603
KLDiv 0.689 ± 0.108 0.581 ± 0.103•
Running time 1300.462 ± 252.984 1346.379 ± 251.647

Table 4
Experimental results (mean ± std. dev.) over synthetic data
with p = 20%. Symbol • represents statistically significantly
better values

LA-MB-MBC GA-MB-MBC

λ = 1, block = 400
Mean accuracy 0.499 ± 0.029 0.504 ± 0.027
Global accuracy 0.060 ± 0.007 0.064 ± 0.009
SHD 26.445 ± 7.620 20.835 ± 3.797
KLDiv 1.006 ± 0.212• 1.184 ± 0.192
Running time 1382.035 ± 178.733 1226.243 ± 75.250•
λ = 1, block = 700
Mean accuracy 0.511 ± 0.031 0.499 ± 0.023
Global accuracy 0.070 ± 0.007 0.064 ± 0.004
SHD 23.949 ± 8.748 20.760 ± 6.287
KLDiv 0.827 ± 0.140 1.090 ± 0.279
Running time 1439.025 ± 167.930 1278.331 ± 139.580•
λ = 1, block = 1000
Mean accuracy 0.519 ± 0.025 0.510 ± 0.011
Global accuracy 0.073 ± 0.008 0.070 ± 0.010
SHD 23.976 ± 8.371 22.776 ± 7.278
KLDiv 0.657 ± 0.137 0.871 ± 0.340
Running time 1478.655 ± 223.565 1420.196 ± 215.475
λ = 1, block = 2000
Mean accuracy 0.503 ± 0.018 0.504 ± 0.008
Global accuracy 0.068 ± 0.005 0.068 ± 0.010
SHD 29.500 ± 9.278 24.217 ± 8.36•
KLDiv 0.722 ± 0.224 0.860 ± 0.196
Running time 1663.217 ± 101.465 1499.978 ± 160.857
λ = 5, block = 1000
Mean accuracy 0.513 ± 0.031 0.495 ± 0.025
Global accuracy 0.070 ± 0.012 0.064 ± 0.006
SHD 25.872 ± 7.503 23.624 ± 7.400
KLDiv 0.820 ± 0.203 1.150 ± 0.366
Running time 1401.360 ± 207.668 1370.247 ± 210.343
λ = 10, block = 1000
Mean accuracy 0.506 ± 0.034 0.490 ± 0.027
Global accuracy 0.067 ± 0.011 0.063 ± 0.006
SHD 27.408 ± 7.043 23.928 ± 6.861•
KLDiv 0.981 ± 0.295 1.170 ± 0.328
Running time 1417.753 ± 235.996 1396.702 ± 192.921

We applied both LA-MB-MBC and GA-MB-MBC using three different values of λ, namely λ = 1, 5,
10, and four different block sizes, namely block = 400, 700, 1000, 2000. This in fact allows us to study
the sensitivity of both algorithms with respect to the input parameter λ and the block size, respectively.
Tables 3–5 show the estimated performance results as mean values and standard deviations for each
metric and each method over the five randomly generated data streams. The best result for each metric
is written in bold.

In Table 3, presenting the results with p = 0% (i.e., stationary data streams), we can first notice the
very low sensitivity of both algorithms with respect to λ values. In fact, even if the best result for the
mean accuracy is obtained with GA-MB-MBC with λ = 1 and block = 1000, and the best result for the
global accuracy is obtained with GA-MB-MBC with λ = 1 and block = 1000 or block = 2000, both
algorithms LA-MB-MBC and GA-MB-MBC present similar predictive performance for the remaining λ
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Table 5
Experimental results (mean ± std. dev.) over synthetic data with p =
50%. Symbol • represents statistically significantly better values

LA-MB-MBC GA-MB-MBC

λ = 1, block = 400
Mean accuracy 0.479 ± 0.016 0.474 ± 0.028
Global accuracy 0.057 ± 0.007 0.058 ± 0.015
SHD 24.690 ± 4.951 20.565 ± 3.384
KLDiv 1.096 ± 0.234 1.423 ± 0.259
Running time 1343.131 ± 142.840 1218.967 ± 93.073•
λ = 1, block = 700
Mean accuracy 0.476 ± 0.013• 0.473 ± 0.032
Global accuracy 0.059 ± 0.008 0.061 ± 0.016
SHD 26.720 ± 4.219 21.389 ± 3.189•
KLDiv 1.074 ± 0.194 1.404 ± 0.463
Running time 1439.041 ± 185.292 1304.240 ± 131.041
λ = 1, block = 1000
Mean accuracy 0.479 ± 0.023 0.484 ± 0.016
Global accuracy 0.064 ± 0.010 0.067 ± 0.012•
SHD 26.240 ± 3.156 21.000 ± 2.930•
KLDiv 0.871 ± 0.250 1.165 ± 0.570
Running time 1559.923 ± 176.562 1420.462 ± 119.949
λ = 1, block = 2000
Mean accuracy 0.465 ± 0.015 0.468 ± 0.012
Global accuracy 0.058 ± 0.005 0.061 ± 0.005
SHD 30.183 ± 5.275 23.050 ± 4.975•
KLDiv 0.921 ± 0.103 0.995 ± 0.304
Running time 1673.916 ± 116.459 1569.938 ± 120.646
λ = 5, block = 1000
Mean accuracy 0.473 ± 0.022 0.490 ± 0.005
Global accuracy 0.057 ± 0.004 0.071 ± 0.007•
SHD 25.752 ± 3.600 20.376 ± 3.215•
KLDiv 1.004 ± 0.219 1.011 ± 0.464
Running time 1491.192 ± 199.937 1409.244 ± 126.923
λ = 10, block = 1000
Mean accuracy 0.468 ± 0.020 0.489 ± 0.007
Global accuracy 0.054 ± 0.007 0.070 ± 0.008
SHD 28.224 ± 5.012 20.736 ± 3.380•
KLDiv 1.144 ± 0.239 1.053 ± 0.398
Running time 1407.993 ± 248.196 1403.722 ± 133.458

Table 6
Experimental results over SynT-drift data

Global Subset Running
accuracy accuracy time

BRa 0.018 0.196 62
EaBR 0.015 0.195 375
EaHTPS 0.026 0.221 34
EaPS 0.030 0.184 628
HTa 0.046 0.164 14
MBR 0.020 0.199 678
MWC 0.014 0.159 1869
LA-MB-MBC 0.040 0.173 3714
GA-MB-MBC 0.038 0.198 3097

values (i.e., λ = 5 and λ = 10). Moreover, regarding the block size, as expected the best results are
obtained with block = 1000 and block = 2000 instances; however, using blocks of 400 instances results
in the worst results since having only a small number of instances may affect the quality of the learned
MBCs. LA-MB-MBC and GA-MB-MBC show similar results as well for SHD, KLDiv, and running time.
In order to study whether the differences in each metric performance are statistically significant or not,
we performed a statistical comparison using the Friedman test followed by the Tukey-Kramer post-hoc
test with a significance level α = 0.05. We represent the values that are statistically significantly better
with the symbol • in Table 3. For all the comparisons, it turns out that only three values were statistically
significantly better, which let us state once again that the performance of both algorithms is quite similar.

In Table 4, presenting the experimental results with a drift rate p = 20%, LA-MB-MBC is performing
the best with λ = 1 and block = 1000 for the mean accuracy, global accuracy and KLDiv. However,
the best SHD result is obtained with GA-MB-MBC with λ = 1 and block = 700. In addition, contrary
to results in Table 3 (p = 0%), we can observe that under a higher drift rate (p = 20%), both algo-
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Fig. 9. Classification results with the drift rate p = 0% and λ = 1. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/IDA-160804)

rithms become more sensitive to the λ value. For both LA-MB-MBC and GA-MB-MBC algorithms, the
best accuracies are obtained with λ = 1 and block = 1000, and as long as λ increases, all the perfor-
mance measures deteriorate. In fact, using higher λ values, some concept drifts cannot be detected and
consequently the model cannot be updated correctly; which may affect its performance over time. In
this case, we can see that GA-MB-MBC is more sensitive since missing the detection of a drift affects
the whole MBC network. In addition, as previously, using small blocks leads to worse results than the
ones obtained with blocks 1000 or 2000. Finally, we can see that there are only few statistically signif-
icant differences (represented by •) resulting from a statistical comparison of both algorithms using the
Friedman test followed by the Tukey-Kramer post-hoc test with a significance level α = 0.05, i.e., both
algorithms show similar predictive performance.

Table 5 shows the experimental results with a drift rate p = 50%. We may observe here that the
best accuracies were obtained with GA-MB-MBC with λ = 5 and block = 1000. In general, we can
conclude here that, in all λ values, GA-MB-MBC outperforms LA-MB-MBC in SHD and mean and global
accuracies, however, LA-MB-MBC presents slightly better KLDiv values than GA-MB-MBC. The better
performance of GA-MB-MBC compared to LA-MB-MBC can be explained by the fact that having 50%
of drift affects a larger instance space (i.e., it can be viewed as a global change), and consequently it
might be better to re-build all the MBC network rather than updating it locally.

In addition, we plot in Figs 9–11 the mean and global accuracy curves for LA-MB-MBC and
GA-MB-MBC algorithms, with λ = 1, block = 1000, and p equal to 0%, 20% and 50%, respectively.
For each curve, the X-axis represents the block number, and the Y-axis represents the classification ac-
curacy. Note that we limited this part to λ = 1, block = 1000, as similar conclusions are reached with
the remaining configurations including different λ and block size values.

In Fig. 9, we can observe that LA-MB-MBC and GA-MB-MBC curves are almost superposed showing
the similar performance of both algorithms, as well as their resilience to false alarms.

In Figs 10 and 11, we can first notice that both algorithms perform well in detecting the change at
blocks 5, 10, 15 and 20. With p = 20% (Fig. 10) the change is more gradual, whereas, in Fig. 11 with
p = 50%, the change is abrupt and more important fluctuations in predictive performance are present.
We can also see in Fig. 10 that LA-MB-MBC usually outperforms GA-MB-MBC in updating the MBC
network and recuperating more quickly its performance. Nevertheless, with higher drift rate, i.e., p =
50%, GA-MB-MBC presents a slightly better performance than LA-MB-MBC.
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Fig. 10. Classification results with the drift rate p = 20% and
λ = 1. (Colours are visible in the online version of the article;
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Fig. 11. Classification results with the drift rate p = 50% and
λ = 1. (Colours are visible in the online version of the article;
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In the second set of experiments with SynT-drift data streams, we compare both LA-MB-MBC and
GA-MB-MBC algorithms against seven multi-label classification methods. Five of them, i.e., BRa, EaBR,
EaHTPS, EaPS and HTa were proposed by [33], whereas MBR and MWC were proposed respectively
in [30,40]. Similarly, as [33], we divide the stream into 20 windows and we report the average of subset
and global accuracies across the data windows, as well as the cumulative running time in seconds. Note
that both LA-MB-MBC and GA-MB-MBC are performed using λ = 1. The obtained results are reported
in Table 6.

For the subset accuracy, GA-MB-MBC performs better than LA-MB-MBC, and also better than any
other method except MBR and EaHTPS. For the global accuracy, LA-MB-MBC performs better than all
remaining methods except HTa. Although not the best, LA-MB-MBC presents a good performance even
though SynT-drift data set is generated based on tree models, and as expected, methods based on Hoeffd-
ing trees (i.e., EaHTPS and HTa) provide the best accuracy results. Nevertheless, the main shortcoming
of our LA-MB-MBC algorithm is the running time which is slower than all remaining methods, and this
is mainly due to the testing part that involves the computation of the most probable explanation.

8. Conclusion

In this paper, we have presented a new method for mining multi-dimensional data streams, namely,
LA-MB-MBC. Basically, LA-MB-MBC proceeds locally at the level of each node in the MBC network,
that is, it monitors the average local log-likelihood of each node over time, then, whenever a concept
drift is detected, it learns a new local structure for each changed node.

Experimental results on synthetic data streams including different rates of change were promising. In
comparison against the GA-MB-MBC algorithm, LA-MB-MBC is shown to be resilient to false alarms,
and also efficient in detecting the change points and adapting the MBC networks especially when there
is a small percentage of change. Moreover, both considered methods show similar predictive perfor-
mance and exhibit competitive accuracy results when compared with existing multi-label classification
methods.

In the future, it will be interesting to investigate the use of different exact or approximate inference
methods in order to alleviate the computational burden when calculating the most probable explanation.
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