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Abstract: In this article we study the univariate and bivariate truncated von Mises

distribution, as a generalization of the von Mises distribution (Jupp and Mardia

(1989)), (Mardia and Jupp (2000)). This implies the addition of two or four new

truncation parameters in the univariate and, bivariate cases, respectively. The re-

sults include the definition, properties of the distribution and maximum likelihood

estimators for the univariate and bivariate cases. Additionally, the analysis of the

bivariate case shows how the conditional distribution is a truncated von Mises dis-

tribution, whereas the marginal distribution that generalizes the distribution intro-

duced in Singh (2002). From the viewpoint of applications, we test the distribution

with simulated data, as well as with data regarding leaf inclination angles (Bowyer

and Danson. (2005)) and dihedral angles in protein chains (Murzin AG (1995)).

This research aims to assert this probability distribution as a potential option for

modelling or simulating any kind of phenomena where circular distributions are

applicable.

Key words and phrases: Angular probability distributions, Directional statistics,

von Mises distribution, Truncated probability distributions.

1 Introduction

The von Mises distribution has received undisputed attention in the field of di-

rectional statistics (Jupp and Mardia (1989)) and in other areas like supervised

classification (Lopez-Cruz et al. (2013)). Thanks to desirable properties such as

its symmetry, mathematical tractability and convergence to the wrapped nor-

mal distribution (Mardia and Jupp (2000)) for high concentrations, it is a viable

option for many statistical analyses. However, angular phenomena may present

constraints on the outcomes that are not properly accounted forby the density

function of the von Mises probability distribution. Thus, a truncated distribu-



2 TR:UPM-ETSINF/DIA/2015-1

tion with the capabilities of the von Mises distribution is strongly suggested.

Additionally, this direction has need of development, since there is hardly any

literature, and to the best of our knowledge, only one paper (Bistrian and Iakob

(2008)), proposes a definition of the truncated von Mises distribution.

In this article, we propose a truncated probability distribution for angular

values whose parent distribution is the von Mises distribution. The univariate

and bivariate cases of this distribution are explicitly developed.

Section 2 introduces the definition for the univariate case and derives some

properties of the distribution, calculates the maximum likelihood estimators of

the parameters and studies the distribution moments. Section 3 addresses the

definition of the bivariate truncated von Mises, maximum likelihood estimation

of the parameters and the definition and study of the conditional and marginal

truncated distributions. Section 4 reports the simulation studies applying the

above developments and experimentally testing the observed behaviors. Section

5 reports experiments on real datasets containing leaf inclination angles in the

univariate case and dihedral angles in protein chains in the bivariate case. Finally,

Section 6 discusses the summary and conclusions.

The proofs of all results can be found in the supplementary material.

2 Univariate truncated von Mises distribution

Definition 2.1 The truncated von Mises distribution is presented as a four-

parameter generalization of the non-truncated case for truncation parameters a, b

as

ftvM(θ;µ,κ, a, b) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

eκ cos(θ−µ)

∫
b
a e

κ cos(θ−µ)dθ
if θ ∈ Oa,b

0 if θ ∈ Ob,a

(1)

where µ ∈ O is the location parameter, κ > 0 the concentration parameter, O is

the circular set of points (O ∶ (x, y) such that x2 + y2 = 1), Oa,b ⊂ O is obtained

by selecting the points in the circular path from a ∈ O to b ∈ O in the preferred
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direction (counterclockwise) and Ob,a is its counterpart w.r.t. O. Our proposed

definition differs from Bistrian and Iakob (2008) in the circular definition of the

truncation parameters. In their article, the truncation parameters were bounded

to a linear definition involving the location parameter. Thanks to this difference,

our distribution only needs truncation parameter values contained in [0,2π] in

order to represent all possible distributions. This also affects the calculations

involving the truncation parameters.

Truncation parameters have a big influence on the shape of the truncated

distribution (Figure 1).

Lemma 2.1 ∃a, b, µ ∈ O such that in Oa,b:

1. ftvM(θ;µ,κ, a, b) is a strictly decreasing function.

2. ftvM(θ;µ,κ, a, b) is a strictly increasing function.

3. ftvM(θ;µ,κ, a, b) increases and decreases reaching a single critical point that

is a maximum.

4. ftvM(θ;µ,κ, a, b) increases and decreases reaching a single critical point that

is a minimum.

5. ftvM(θ;µ,κ, a, b) increases and decreases reaching two critical points, a max-

imum and a minimum.
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Figure 1: Several truncated von Mises distributions that include all cases of Lemma

2.1. Symmetrical function with maxima not at the extrema (thin continuous line),

strictly increasing function (dashed line), strictly decreasing function (thick continuous

line), unique critical point that is a minimum (dash-dot line) and two critical points, a

maximum and a minimum (dotted line).

Looking at the normalization constant, we find that given fvM(θ;µ,κ) and

ftvM(θ;µ,κ, a, b) such that Ob,a ≠ ∅ then fvM(θ) < ftvM(θ), ∀θ ∈ Oa,b, as would

be expected from a truncated distribution. Note then that while truncation

parameters are circular quantities, the values for the integration coefficients are

linear. Therefore, we use b + 2π if b < a as integration coefficients and a, b if

a ≤ b (Unless otherwise stated, this will be assumed and not written explicitly

throughout).

It is a well-known result (Abramowitz and Stegun (1964)) that 2πI0(κ) =

∫
2π
0 eκ cos(θ−µ)dθ, where I0(κ) is the modified Bessel function of the first kind and

order 0, that is,

I0(κ) =
∞

∑
m=0

x2m

(m!)22m
.

The above expression suffices for truncation parameters a, b such that Oa,b = O.

However, it is necessary to calculate the general case for non-restricted truncation

parameters. Taking w = ⌊n2 ⌋ + mod n
2 − 1, we obtain:
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Lemma 2.2 ∫
b
a e

κ cos(θ−µ)dθ = I(b;µ,κ) − I(a;µ,κ), where

I(θ;µ,κ) =
∞

∑
n=0

κn

n!

⎛

⎝
sin(θ − µ)

w

∑
i=0

⎛

⎝
cosn−2i−1(θ − µ)

2i

∏
j=0

(n − j)−(−1)
j⎞

⎠

+
((−1)n + 1)∏wj=0(n − j)

−(−1)j(θ − µ)

2

⎞

⎠
. (2)

I(θ;µ,κ) is the distribution function of the positive support of the truncated von

Mises density.

2.1 Maximum likelihood estimation

Provided we have a sample of observations θ1, θ2, . . . , θn from a truncated von

Mises distribution (1), we obtain:

lnL(µ,κ, a, b; θ1, θ2, . . . , θn) =
n

∑
i=1

ln
⎛

⎝

eκ cos(θi−µ)

∫
b
a e

κ cos(θ−µ)dθ

⎞

⎠

=
n

∑
i=1

κ cos(θi − µ) − n ln(∫

b

a
eκ cos(θ−µ)dθ)

(3)

where lnL(µ,κ, a, b; θ1, θ2, . . . , θn) is the log-likelihood function for the truncated

von Mises distribution.

We now seek to solve the system of four log-likelihood equations created by

the four parameters of the distribution. For parameters µ,κ, we have

∂ lnL

∂µ
= 0

∂ lnL

∂κ
= 0.

As parameters a, b, define the region of the greater-than-zero density, we find

that all θ1, . . . , θn observations necessarily lie within the subset Oa,b. Thanks to

this consideration, together with the −n ln (∫
b
a e

κ cos(θ−µ)dθ) sub term of (3), i.e.,

the integral of a solely positive function as the argument of the strictly increasing

logarithmic function and n ∈ N, we can isolate the estimators
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Oâ,b̂ = argmax
a,b

(max({A(Oθ′1,θ
′

2
), . . . ,A(Oθ′n−1,θ

′
n
),A(Oθ′n,θ

′

1)
})), (4)

where A(Oθ1,θ2) is the angle between the point with angle θ1 w.r.t. 0 and the

point with angle θ2 w.r.t. 0, and {θ′1, . . . , θ
′

n} is the sample sorted in ascend-

ing order of value. Intuitively, the truncation parameters are separated by the

largest angle and are contiguous in a sorted finite circular sample. Notice that we

input the angle between the last and the first element in the sample in order to

complete the circle. Consequently, every truncated distribution with truncation

parameters whose positive support does not include 0○ maximizes the integral

subterm of (3) by means of this inclusion in (4).

From this result, we can say that the truncation parameters of the truncated

von Mises distribution have existing and population-only dependent maximum

likelihood estimators. For parameters µ and κ, interdependency is a consequence

of the possibly non-symmetrical shape of the distribution. If we observe the

expression of the partial derivatives

1

n

n

∑
i=1

sin(θi − µ) −
eκ cos(a−µ) − eκ cos(b−µ)

∫
b
a e

κ cos(θ−µ)dθ
= 0

1

n

n

∑
i=1

cos(θi − µ) −
∫
b
a cos(θ − µ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
= 0,

eκ cos(a−µ) − eκ cos(b−µ) = 0 holds jf a, b are symmetrical w.r.t. µ, reducing the

location parameter estimator to that of the non-truncated case (Mardia and

Jupp (2000)), the circular sample mean µ̂. As no population-only dependent

expressions of the parameters µ and κ were found, we use optimization techniques

to maximize the log-likelihood function for those parameters in our study. To

be precise, we regard the optimization of µ and κ as a non-linear programming

problem that we can solve as a system of Karush-Kuhn-Tucker conditions.
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2.2 Moments

The moments in circular statistics are particular values of the characteristic func-

tion. The r-th moment about a direction d can be written as

mrtvM = E[eir(X−d)].

The first moment about the 0 direction for the truncated von Mises is calculated

as

m1tvM =
∫
b
a cos(θ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
+
i ∫

b
a sin(θ)eκ cos(θ−µ)dθ

∫
b
a e

κ cos(θ−µ)dθ
, (5)

and we can relate (5) to the first moment about the µ direction, denoted as m′

1tvM

as

m1tvM = eiµm′

1tvM
. (6)

Notice that if cos(a − µ) = cos(b − µ), then m′

1tvM
= ∫

b
a cos(x−µ)eκ cos(x−µ)dθ

∫
b
a e

κ cos(x−µ)dθ
= R, the

mean resultant length of µ and thus m1tvM = eiµR.

An alternative expression for m1tvM can be found by considering equations

E[cos(x)] = R′ cos(µ′) and E[sin(x)] = R′ sin(µ′), where R′ and µ′ are the sample

mean resultant length and sample mean, respectively. We can then state

m1tvM = E[cos(x)] + iE[sin(x)] = R′ cos(µ′) + iR′ sin(µ′) = R′eiµ
′

. (7)

Thus, merging Equations (6) and (7), we obtain

ei(µ
′
−µ)R′

=m′

1tvM
,

which can be seen as a valuable expression as it contains the sample mean (µ′)

and the location parameter of the distribution (µ) .

3 Bivariate truncated von Mises distribution

The non-truncated bivariate von Mises distribution was first proposed by Singh

(2002) and extended and developed in Mardia et al. (2008) and Mardia and Voss
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(2011). It is a unimodal/bi-modal function on the torus fbtvM ∶ O × O → R
obtained by replacing the quadratic and linear terms of the normal bivariate

distribution with their circular analogues. This distribution is known as the “sin

variant bivariate von Mises distribution” and is defined for dependent pairs of

angular variables. It is expressed for variables θ1 and θ2, as

f(θ1, θ2) = Ce
κ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2),

where κ1, κ2 ≥ 0, λ ∈ R, µ1, µ2 ∈ O and C is the normalization constant.

We propose the density function for the truncated case as a nine-parameter

function with density defined as follows:

Definition 3.1 We wite the density function for the truncated case as a nine-

parameter function with density

fbtvM(θ1, θ2;W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fubvM (θ1,θ2;W )

∫
b1
a1 ∫

b2
a2

fubvM (θ1,θ2;W )dθ2dθ1

if θ1 ∈ Oa1,b1 , θ2 ∈ Oa2,b2 ,

0 otherwise

(8)

where W = {λ,µ1, µ2, κ1, κ2, a1, b1, a2, b2} is the parameter vector and

fubvM(θ1, θ2;W ) = eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2) is the unnormal-

ized bivariate von Mises distribution. Parameters µ1, µ2 and κ1, κ2 are analogous

to parameters µ and κ, respectively, in the univariate truncated case. Truncation

parameters a1, b1, a2 and b2 are similar to the univariate truncation parameters.

The λ ∈ R parameter accounts for the dependency between the variable compo-

nents (Figure 2). If λ = 0, then θ1 and θ2 are independent and each is distributed

as a univariate von Mises distribution. Also, if θ1, θ2 are independent, then λ = 0.
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Figure 2: Example of the bi-dimensional von Mises distribution with parameters λ =

6, µ1 = π,µ2 = 3, κ1 = 2, κ2 = 1, a1 = 2, b1 = 6, a2 = 1, b2 = 5.5, showing truncated bi-

modality.

A desirable property of a joint distribution is that it should have closed dis-

tributions under marginalization and conditioning, i.e., the marginal and condi-

tional distributions should also follow the univariate distribution. Particularizing

for the von Mises family, the bivariate von Mises distribution presents closed dis-

tributions only under conditioning as shown by Singh (Singh (2002)). We want

to find out whether this also holds for the truncated case.

3.1 Maximum Likelihood Estimation

The maximum likelihood estimator for the bivariate distribution takes data of

the form {(θ1i, θ2i)} i = 1, . . . , n. The resulting log-likelihood function is
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lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n))

=
n

∑
i=1

ln
⎛

⎝

eκ1 cos(θ1i−µ1)+κ2 cos(θ2i−µ2)+λ sin(θ1i−µ1) sin(θ2i−µ2)

∫
b1
a1 ∫

b2
a2
eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1

⎞

⎠

=
n

∑
i=1

(κ1 cos(θ1i − µ1) + κ2 cos(θ2i − µ2) + λ sin(θ1i − µ1) sin(θ2i − µ2))

−n ln(∫

b1

a1
∫

b2

a2
eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1) .

Thus we have

∂

∂µ1
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

n

∑
i=1

κ1 sin(θ1i−µ1)−λ cos(θ1i−µ1) sin(θ2i−µ2)−
n (∫

b2
a2
fubvM(a1, θ2) − fubvM(b1, θ2)dθ2)

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0,

where fubvM(θ1, θ2) is the following unnormalized bivariate truncated von Mises

function

fubvM(θ1, θ2) = e
κ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2).

Similarly, the partial derivate w.r.t. µ2 gives

n

∑
i=1

κ2 sin(θ2i−µ2)−λ cos(θ2i−µ2) sin(θ1i−µ1)−
n (∫

b1
a1
fubvM(θ1, a2) − fubvM(θ1, b2)dθ1)

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0.

For κ1 we have

∂

∂κ1
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n

∑
i=1

cos(θ1i − µ1) −
∫
b1
a1 ∫

b2
a2

cos(θ1 − µ1)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0. (9)
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Similarly, the partial derivate w.r.t. κ2 gives

1

n

n

∑
i=1

cos(θ2i − µ2) −
∫
b1
a1 ∫

b2
a2

cos(θ2 − µ2)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0. (10)

At this point, we can see that both equations (9) and (10), involving κ1, κ2 pa-

rameters, respectively, preserve their analogy with the univariate case. Their

second addend corresponds to the definition of the estimators of E[cos(θ1 −

µ1)] and E[cos(θ2 − µ2)], respectively.

For the parameter λ we obtain

∂

∂λ
lnL(W ; (θ11, θ21), . . . , (θ1n, θ2n)) = 0,

that is,

1

n

n

∑
i=1

sin(θ1i−µ1) sin(θ2i−µ2)−
∫
b1
a1 ∫

b2
a2

sin(θ1 − µ1) sin(θ2 − µ2)fubvM(θ1, θ2)dθ2dθ1

∫
b1
a1 ∫

b2
a2
fubvM(θ1, θ2)dθ2dθ1

= 0,

which analogously corresponds to the estimator of E[sin(θ1 − µ1) sin(θ2 − µ2)].

As in the univariate case, the truncation parameters has the following isolated

estimators

Oâ1,b̂1
= argmax

a1,b1

(max({A(Oθ′11,θ
′

12
), . . . ,A(Oθ′1n−1,θ

′

1n
),A(Oθ′1n,θ

′

11
)}))

Oâ2,b̂2
= argmax

a2,b2

(max({A(Oθ′21,θ
′

22
), . . . ,A(Oθ′2n−1,θ

′

2n
),A(Oθ′2n,θ

′

21
)})),

while as yielded by the above calculations, the expressions regarding the non-

truncation parameters enhibit interdependency. We optimize them as a non-

linear programming problem in the form of a system of Karush-Kuhn-Tucker

conditions, as we did in univariate case.

3.2 Conditional truncated von Mises distribution

The density of the conditional truncated von Mises distribution is defined as:

Definition 3.2 The conditional truncated von Mises distribution has density

fctvM(θ2∣θ1;λ,µ1, µ2, κ2, a2, b2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

eκ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)

∫
b2
a2

eκ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2
if θ2 ∈ Oa2,b2 .

0 otherwise
(11)
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It is a six-parameter distribution where the parameters hold the same mean-

ing as in the bivariate case, with the simplification of parameters κ1, a1, b1 for

fctvM(θ2∣θ1) (or κ2, a2, b2 for fctvM(θ1∣θ2)). Worthy of note, however, is that

θ1 ∈ Oa1,b1 in fctvM(θ2∣θ1) since otherwise, by the definition of the conditional

distribution fctvM(θ2∣θ1) =
fbtvM (θ2,θ1)
ftvM (θ1)

, fctvM(θ2∣θ1) is not defined.

Theorem 3.1 A conditional truncated von Mises distribution corresponds to a

univariate truncated von Mises distribution through

fctvM(θ2∣θ1;λ,µ1, µ2, κ2, a2, b2) =

ftvM (θ2;µ2 + arctan(
λ sin(θ1 − µ1)

κ2
) ,

√

κ22 + (λ sin(θ1 − µ1))2, a2, b2) ,

which completely specifies the behavior and properties of the conditional distri-

bution and is analogous to the non-truncated conditional case (Singh (2002)).

3.3 Marginal truncated von Mises distribution

We can define the density function of the marginal truncated von Mises distri-

bution as:

Definition 3.3 The density function of the marginal truncated von Mises dis-

tribution can be written as

fmtvM(θ1;W ) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
b2
a2

eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2

∫
b1
a1 ∫

b2
a2

eκ1 cos(θ1−µ1)+κ2 cos(θ2−µ2)+λ sin(θ1−µ1) sin(θ2−µ2)dθ2dθ1
if θ1 ∈ Oa1,b1

0 otherwise

(12)

It is a nine-parameter distribution that shares all the parameters with the bivari-

ate truncated von Mises distribution. In the original publication, Singh (2002)

studied the distribution and reported the “frontiers” of bi-modality (for µ = 0)

as
I1(κ2)

I0(κ2)
=
κ1κ2
λ2

where the distribution is unimodal if
I1(κ2)
I0(κ2)

≥ κ1κ2
λ2

, and bimodal with two equal

maxima otherwise. Additionally, the modes were calculated to be symmetrical
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w.r.t µ1 and at the distance value θ∗1 that solves the equation (for µ1 = 0):

A(

√

κ2 + λ2 sin2(θ∗1))
√

κ2 + λ2 sin2(θ∗1)
cos(θ∗1) =

κ1
λ2
,

where A(x) =
I1(x)
I0(x)

. In order to generalize this analysis to cover the truncated

case in (12), we need to account for the contribution made by the parameters

µ2, a2 and b2 to the shape of the distribution. µ2 is not necessarily simplified

by the symmetry of a2 and b2 in the non-truncated case. Additionally, a2 and

b2 do not behave as truncation parameters, as they do not address the argu-

ment of the function and appear in both the numerator of the expression and

the normalization term, actively influencing the resultant shape of the proposed

distribution. Contrary to the non-truncated case, a truncated marginal distribu-

tion that exhibits two maxima may have only one global maximum; and. even

if it has only one maximum, the distribution is not necessarily centered around

the mean (Figure 3). Therefore, our analysis determines the different parameter

configurations that produce the whole range of behaviors, with a special focus on

bi-modality/unimodality results. Parameters a1 and b1 behave as the truncation

parameters studied for the univariate case.
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Figure 3: Several truncated marginal distributions showing unimodality (continuous line)

with parameters λ = 5, µ1 = π,µ2 = 0, κ1 = 1, κ2 = 4, a1 = 0, b1 = 2π, a2 = π − 0.2, b2 = 2π,

two equal maxima (dashed line) with parameters λ = 5, µ1 = π,µ2 = 0, κ1 = 1, κ2 =

4, a1 = 0, b1 = 2π, a2 = 0, b2 = 2π, truncated unimodality (dash-dot line) with parameters

λ = 1, µ1 = 4, µ2 = 2, κ1 = 3, κ2 = 4, a1 = 0, b1 = 5, a2 = 2, b2 = 2π and two distinct maxima

(dotted line) with parameters λ = 10, µ1 = 6, µ2 = 1, κ1 = 0.3, κ2 = 6, a1 = 0, b1 = 2π, a2 =

0, b2 = 5 respectively.

If, without loss of generality, we take θ1′ = θ1 − µ1, we can postulate the

following theorem:

Theorem 3.2 All different behaviors w.r.t. the unimodality/bi-modality of the

marginal truncated von Mises distribution can be accounted for as follows

1. fmtvM(θ1′) is unimodal with mode (maximum) in µ1, if and only if

T (λ,µ2, κ1, κ2, a2, b2) < 0 and cos(b2 − µ2) = cos(a2 − µ2).

2. fmtvM(θ1′) is bi-modal with equal maxima, if and only if T (λ,µ2, κ1, κ2, a2, b2) >

0 and cos(b2 −µ2) = cos(a2 −µ2). Also in this case, a minimum is found at

θ1′ = 0.

3. fmtvM(θ1′) presents two differentiated maxima if and only if one of the two

following cases applies:



TR:UPM-ETSINF/DIA/2015-1 15

(a) cos(b2 − µ2) < cos(a2 − µ2) and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2)

has exactly two zero points in θ1′ ∈ [−π2 ,0]

(b) cos(b2 − µ2) > cos(a2 − µ2) and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2)

has exactly two zero points in θ1′ ∈ [0, π2 ]

4. fmtvM(θ1′) is unimodal with mode not at µ1 if the parameters do not match

any of the above cases,

where T (λ,µ2, κ1, κ2, a2, b2) is the test function and is defined as

T (λ,µ2, κ1, κ2, a2, b2) = −
κ1
λ2

+
∫
b2
a2

sin2(θ2 − µ2)e
κ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

, (13)

and f ′umtvM(θ1′ ;λ,µ1, µ2, κ1, κ2, µ2, a2, b2) is the unnormalized truncated marginal

von Mises derivative function.

4 Simulation

In this section we experimentally test the behavior and properties of the univari-

ate and bivariate truncated distributions. We have implemented an acceptance-

rejection algorithm for simulation and maximum likelihood estimation by opti-

mization over the likelihood function for both cases. We will confirm the expected

effect of manipulating the parameters of the distribution by conducting different

samplings and estimation operations. In the bivariate case, our studies are focus

on the effect of the λ and truncation parameters.

4.1 Univariate case simulation

For the univariate case:

1. In our first simulation, we sampled 20000 points from the univariate distri-

bution ftvM(θ;π,2,1,5) (Figure 4A). This resulted in a nearly symmetrical

distribution, where the sample mean θ̂ = 3.1299 ≈ π. In this case, Oa,b se-

lects most of the area of the original von Mises distribution. Maximizing the

log-likelihood function (3) yielded values µ̂ = 3.1412, κ̂ = 1.9932, â = 1.0014

and b̂ = 4.9940. These values are indicative of a successful estimation of the

parameters with errors roughly around 10−3.
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Figure 4: Simulation of two truncated von Mises distributions. The data were

grouped in same-length value intervals in order to ilustrate its relative frequency.

2. We sampled 20000 points from the univariate distribution ftvM(θ; 0,2,3, π+

2) (Figure 4B). Its shape is highly asymmetrical with truncation parameters

that satisfy µ + π ∈ Oa,b and µ ∉ Oa,b. We chose this case because it was

apparently troublesome to estimate and identify as a truncated von Mises

distribution, i.e., the differences w.r.t. the original von Mises distribution

are very noticeable. We find that the sample mean θ̂ = 4.6335 clearly differs

from the location parameter. Maximizing the likelihood function yielded

parameter values µ̂ = 6.3044 (which, given the periodicity of the function,

could be also considered µ = 6.3044 − 2π ≈ 0 ), κ̂ = 2.0446, â = 3.0004,

b̂ = 5.1415.

3. We tested the distribution for relatively high concentrations by sampling

20000 points from the univariate distribution ftvM(θ;π,15,0.5, π) (Figure

5). We can see how the truncation parameters retain slightly less than half

of the area of the non-truncated distribution, this in turn causes the density

to be slightly greater than twice the non-truncated density in its possitive

support. Maximizing the log-likelihood function yielded parameter values

µ̂ = 3.1386, κ̂ = 15.2597, â = 2.0877, b̂ = 3.1416.
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Figure 5: Simulation of the truncated von Mises distribution of the third study.

4.2 Bivariate case simulation

For the bivariate case:

1. We sampled 20000 points from the bivariate distribution

fbtvM(θ1, θ2; 1,2, π,3,1,0,4,3,6) (Figure 6). From a visual inspection, this

has a low lambda parameter and shows unimodality. The truncation pa-

rameters for this case more than halve the volume by selecting the positive

support in the Oa1,b1 ×Oa2,b2 region. Thus we find, for example, that it is

possible to build a truncated bivariate von Mises distribution that shows

only one maximum whereas its associated non-truncated distribution pro-

duces a bi-maximal distribution. The maximization of the log-likelihood

function yielded parameter values λ̂ = 0.7579, µ̂1 = 2.0540, µ̂2 = 3.2657, κ̂1 =

2.9753, κ̂2 = 1.0516, â1 = 0.0353, b̂1 = 3.9846, â2 = 3.0006, b̂2 = 5.9910. This is

a lowery quality approximation with an error of around 10−1.
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Figure 6: Simulation of a bivariate truncated von Mises distribution with parame-

ters λ = 1, µ1 = 2, µ2 = π,κ1 = 3, κ2 = 1, a1 = 0, b1 = 4, a2 = 3, b2 = 6 from two different

perspectives. The top plot corresponds to the data grouped by equal-length×equal-

length value square areas in order to clearly ilustrate its relative frequency, the

middle plot corresponds to the truncated bivariate von Mises distribution and the

bottom plot corresponds to the associated bivariate distribution.

2. The next study was similar but reformulated the parameters to accont for

the case when truncation omits one of the maxima of an otherwise bi-

modal distribution. To be precise, we studied 20000 points sampled from

fbtvM(θ1, θ2; 5,2, π,4,2,2.5,4,3,6) (Figure 7), where the truncation parame-

ters a1 and a2 were altered in order to select only part of one of the maxima.

Notice also that in this case a significantly higher λ parameter was used in

order to achieve bimodality. Maximizing the log-likelihood function for this

case yielded parameter values λ̂ = 4.9199, µ̂1 = 2.0093, µ̂2 = 3.0476, κ̂1 =

4.0643, κ̂2 = 1.48, â1 = 2.5008, b̂1 = 3.9788, â2 = 3.0014, b̂2 = 5.9947 with a

similar error of around 10−1.
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Figure 7: Simulation of a bivariate truncated von Mises distribution with param-

eters λ = 5, µ1 = 2, µ2 = π,κ1 = 4, κ2 = 2, a1 = 2.5, b1 = 4, a2 = 3, b2 = 6 from two

different perspectives.

5 Real data applications

We further illustrate the truncated case by analyzing the data obtained by

Bowyer and Danson. (2005) for the univariate case and Murzin AG (1995) for

the bivariate case.

5.1 Leaf angle inclination

The data in Bowyer and Danson. (2005) was collected during a safari along

the Kalahari Transect, southwest Botswana in 2001. It contains measurements

of leaf inclination angles of four different woody plant species (Acacia erioloba,

Grewia flava, Acacia leuderitzii and Acacia mellifera) across three different re-

gions (Mabuasehube, Tsabong and Tshane). The measurements were taken using

a clinometer.

In order to formally test the goodness-of-fit of the estimated distributions,



20 TR:UPM-ETSINF/DIA/2015-1

we transform the data by means of the random variable U = 2π
[I(θ,µ,κ)−I(a,µ,κ)]

∫
b
a e

κ cos(θ−µ)dθ

mod 2π that is applied over the sorted sample θ1, . . . , θn. If the data distribute ac-

cording to the truncated von Mises distribution, then the above random variable

has a uniform distribution. As shown in Mardia and Jupp (2000), the modified

Rayleigh statistic S∗ = (1− 1
2n)2nR

2 + nR4

2 , where n is the sample size and R the

mean resultant length, distributes as a χ2
2 distribution.

1. For the first study, the whole dataset containing a total of 741 samples

was observed without further regard for region or type of plant (Table 1,

Figure 8). A visual inspection of the plot clearly shows that the truncated

von Mises distribution performs better. Formally, for the truncated case,

S∗ = 2.8887, which corresponds to a significance level of between 0.2 and

0.3 and acceptance of this distribution hypothesis. For the non-truncated

case, S∗ = 25.5028, with is a clear rejection with a significance level of less

than 0.001. From these results we conclude that the truncated distribu-

tion is significantly better for these data. Truncation parameters conform

the circular interval O0,π
2
, which indicates no angle greater than 90○ was

measured in this study.

Figure 8: The study distribution and data representation of the entire dataset.

The estimated truncated von Mises distribution (lighter line) clearly has higher

density values than its associated von Mises distribution (darker line). The data

are grouped by value intervals in order to observe its relative frequency (bars).
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Table 1: Parameter values obtained after conducting the first study

µ κ a b No.Samples

All data 1.0063 5.9602 0 1.5708 741

2. For the second study, we grouped the data by plant types without regards

for region. This yielded four different distributions. A visual inspection

shows that the univariate distributions are clearly better than the non-

truncated von Mises distribution at describing the resulting data (Table

3, Figure 9), except for the case of A. erioloba. The goodness-of-fit tests

(Table 2) revealed that the non-truncated distribution is rejected in all cases

but in A.erioloba, whereas the truncated distribution hypothesis was more

strongly accepted than that of the non-truncated distribution in all cases.

Thus we can conclude that, for this study, the truncated distribution models

the data better.

Table 2: Modified Rayleigh statistic values for the second study

Truncated von Mises S∗ Non-truncated von Mises S∗

A. erioloba 3.014 3.5534

Grewia flava 0.0038 20.6273

A. leuderitzii 2.6073 10.1990

A. mellifera 1.3157 7.3046

Truncation parameters were consistently found to be in O0,π
2

except for

A.erioloba, which also presented a significantly higher concentration param-

eter than in any of the other estimations. The irregularities in A.erioloba

could partially be explained by the small sample size, which causes the

estimations to be less reliable. More data would be needed to clarify the

current results. On the whole, the remaining studies show few variations

in the location-concentration parameters, which closely resemble the ones

obtained in the first study.
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Figure 9: Studies of each type of plant.

Table 3: Parameter values yielded after conducting the second study

µ κ a b No.Samples

A. Erioloba 0.8516 11.1894 0 1.5359 100

Grewia flava 1.1261 5.2668 0 1.5708 254

A. Leuderitzii 1.0706 5.5138 0 1.5708 184

A. Mellifera 0.9125 5.7396 0 1.5708 203

3. For the third study, we separately fitted univariate truncated distributions

to the data for each plant in each region. Since not all plants were measured

in all regions, this procedure produced eight different univariate truncated

von Mises estimations. The distributions are generally observed to clearly

differ from their associated non-truncated von Mises distribution, except

in the first of the eight plots (Table 5, Figure 10). The goodness-of-fit

tests (Table 4) are also consistent with previous studies. All truncated von

Mises hypotheses were accepted, while around half of the non-truncated
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distributions were rejected. Also, acceptance is stronger for the truncated

case in all cases where both tested distributions were accepted. Thus, there

is a strong suggestion that the truncated von Mises distribution properly

models the underlying behavior that yielded the data.

Table 4: Parameter values yielded after conducting the third study

Truncated von Mises S∗ Non-truncated von Mises S∗

A. erioloba, Mabuasehube 3.014 3.5534

Grewia flava, Mabuasehube 1.1543 8.9599

A. leuderitzii, Tsabong 2.0981 7.3115

Grewia flava, Tsabong 0.2050 3.8702

A. mellifera, Tsabong 0.1199 4.2131

Grewia flava(2), Tsabong 0.1165 9.7290

A. leuderitzii, Tshane 0.7002 2.8717

A. mellifera, Tshane 1.0525 10.2656

For this study, each distribution was estimated from a relatively small sam-

ple size ranging from 50 to 104 samples, which may have caused estimations

to be less precise than desired. The concentration parameter shows the high-

est variability across the different cases (from 4.4078 to 11.1894 across the

whole study or even from 4.8340 to 7.4245 in the case of A. leuderitzii).

With more data it might be possible to distinguish if the variations in the

concentration parameter are clearly influenced by the region of the plant

species or the small sample size. Regarding the location parameter, there

are few variations in the parameter value on the whole, A. mellifera being

the species that experienced the highest variations w.r.t. one of the mea-

surements in the first study. Truncation parameters remained consistently

within the O0,π
2

interval.
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Figure 10: Studies of each type of plant in each region.
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Table 5: Parameter values yielded after conducting the third study

µ κ a b No.Samples

A. erioloba, Mabuasehube 0.8516 11.1894 0 1.5359 100

Grewia flava, Mabuasehube 1.1882 5.8142 0.0873 1.5708 50

A. leuderitzii, Tsabong 0.9712 4.8340 0.0873 1.5708 100

Grewia flava, Tsabong 1.1082 6.0832 0 1.5708 100

A. mellifera, Tsabong 0.6844 4.5884 0 1.4835 100

Grewia flava (2), Tsabong 1.1091 4.4078 0 1.5708 104

A. leuderitzii, Tshane 1.1474 7.4245 0.1920 1.5708 84

A. mellifera, Tshane 1.0525 10.2656 0.4014 1.5708 103

5.2 Pairs of dihedral angles in protein chains

This study consists of a single estimation for the bivariate case. The dataset cor-

responds to the spatial coordinates of the β-class atom in the SCOP-ASTRAL

database (Murzin AG (1995)). Specifically, we extract the data on the position

of the alpha-carbon atoms within a protein chain. The data are properly trans-

formed from a set of coordinates to a set of pairs of angles (θ, φ) that account

for the relative angular deviation of the next node in the protein chain has the

previous part of the chain. After applying this procedure, the resulting sample

contained 288610 observations.

The data have two clearly distinguishable modes that are separated by an

area of low or zero density. This area is known to be empty in protein chains,

which our model will assume by fixing the truncation parameters at O4.8,2.2.

For this dataset, the bivariate truncated distribution is capable of capturing bi-

modality and defining an area of empty density as desired, and the parameter

estimation by the maximum likelihood method provided a model that clearly

exhibited theseh features (Figure 11).
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Figure 11: Estimated truncated von Mises distribution for the entire dataset. This

distribution corresponds to the parameter values in Table 4. The top plot corresponds

to a data frequency plot, the middle plot corresponds to the estimated bivariate truncated

von Mises distribution and the bottom plot corresponds to its associated non-truncated

distribution.

Table 6: Parameter values yielded after conducting the study on the protein chain dataset

λ µ1 µ2 κ1 κ2 a1 b1 No.Samples

-1.93333 1.3859 0 2.1477 1.1213 0.0023 3.1363 288,610

In this case (Table 6), there seems to be a consistent inverse correlation between

the pairs of angles as shown by the value of the lambda parameter. This plays a

role in creating the observed bi-modality.

We conclude that the truncated von Mises distribution can be used to ef-

fectively model, simulate and summarize data about real-world phenomena and

may be applied in any experiment whose outcome can be expressed in angular

values.
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6 Summary and conclusions

In this article we developed the theoretical framework of the univariate and the

bivariate truncated von Mises distribution. To do this, we gave

1. The definition of a truncated von Mises distribution in the circle O. The cir-

cular distribution is defined by means of the O subset, as the periodicity and

properties of the circlehave to be naturally acknowledged for. If the a, b pa-

rameters were to not include 0○ (our reference point) or ftvM(0;µ,κ, a, b) =

0, then linear definitions for the truncation parameters could be used.

Therefore, Oa,b becomes [a, b] with the restriction of a < b and maximum

likelihood estimators â, b̂ become â = min{θ1, . . . , θn}, b̂ = max{θ1, . . . , θn}

respectively. The extension for the bivariate case is trivial.

2. The successfully determined expressions of the maximum likelihood esti-

mators. For both univariate and bivariate cases, solely sample-dependent

maximum likelihood estimators of the truncation parameters were found,

while the other parameters showed interdependency.

3. The resulting moments of the univariate case and existing interrelationships.

4. The properties of both bivariate and univariate cases, especially the results

concerning the additional manipulability and possible shapes of the distri-

bution when modifying the truncation parameters, that is, a distribution

can be made to be strictly increasing or strictly decreasing symmetrical

or non-symmetrical function, or to concentrate its positive support in an

arbitrarily short sub-interval.

5. The bivariate case and studies of the shape and behavior of marginal and

conditional distributions. We determined that every conditional truncated

von Mises distribution is a univariate truncated von Mises distribution. For

the case of the marginal distribution, we concluded that only for parameter

λ = 0 does the distribution behave like a truncated univariate von Mises

distribution. When λ ≠ 0, the resultant marginal distribution is a poten-

tially bi-maximal not a von Mises distribution. We obtained four different

cases in order to characterize all the different truncated marginal von Mises
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behaviors. To be precise, when the marginal distribution is bi-maximal, it

exhibits either one of two or two global maxima and the minimum value

is not at µ1 if truncation parameters a2 and b2 are not symmetrical w.r.t.

µ2, and it is if they are. When the marginal distribution is unimodal, the

maximum value is not at µ1 if truncation parameters a2 and b2 are not

symmetrical w.r.t. µ2, and it is if they are. This covers all possible shapes

or behaviors.

SUPPLEMENTARY MATERIAL

Appendix All proofs of introduced lemmas and theorems (.pdf file).
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1 APPENDIX. Proofs of the results

1.1 Proof of Lemma 1

1. If ftvM(θ;µ,κ, a, b) is strictly decreasing ⇔ a, b satisfy a, b ∈ Oµ,µ+π.The proof follows

simply from noting that the von Mises distribution decreases from its maximum to its

minimum value in Oµ,µ+π. If Oa,b ⊂ Oµ,µ+π, the resulting truncated von Mises distribution

exhibits a monotonic decreasing behavior.

2. Analogously, if ftvM(θ;µ,κ, a, b) is strictly increasing⇔ truncation parameters a, b satisfy

Oa,b ⊂ Oµ−π,µ.

3. If ftvM(θ;µ,κ, a, b) increases and decreases reaching a single maximum ⇔ truncation

parameters a, b satisfy µ ∈ Oa,b and µ + π, ∉ Oa,b

4. If ftvM(θ;µ,κ, a, b) increases and decreases reaching a single minimum ⇔ truncation

parameters a, b satisfy µ + π ∈ Oa,b and µ,µ + 2π ∉ Oa,b.

5. If ftvM(θ;µ,κ, a, b) increases and decreases with both single maximum and single mini-

mum ⇔ the truncation parameters a, b satisfy either µ,µ + π ∈ Oa,b or µ,µ − π ∈ Oa,b

1.2 Proof of Lemma 2.

We have, by means of the power series expansion of the e(⋅) function,

I(θ;µ,κ) = ∫ fuvM(θ;µ,κ)dθ = ∫ eκ cos(θ−µ)dθ = ∫
∞

∑
n=0

(κ cos(θ − µ))n
n!

dθ,

where fuvM(θ;µ,κ) is the unnormalized von Mises distribution, and I(θ;µ,κ) is its distribution

function. Therefore, ∫
b

a fuvM(θ;µ,κ) = I(b;µ,κ) − I(a;µ,κ).
Considering that ∑∞

n=0
∣(κ cos(θ−µ))n ∣

n!
is a solely positive continuous bounded function in

[1, eκ], and, therefore, for any finite integral coefficients i1, i2 ∈ R, it satisfies ∫
i2
i1
∑∞

n=0
(κ cos(θ−µ))n

n!
dθ <
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∞, we can conclude that it satisfies the Fubini-Tonelli theorem conditions for integral summation

exchange.

We then follow with the procedure for the indefinite integral:

I(θ;µ,κ) = ∫
∞

∑
n=0

(κ cos(θ − µ))n
n!

dθ

=
∞

∑
n=0
∫

(κ cos(θ − µ))n
n!

dθ

=
∞

∑
n=0

κn

n! ∫ cosn(θ − µ)dθ. (1)

The above integral is defined in a recursive way as

∫ cosn(θ − µ)dθ = sin(θ − µ) cosn−1(θ − µ)
n

+ n − 1

n ∫ cosn−2(θ − µ)dθ.

And it can be calculated by the procedure of integration by parts. In this appendix, however,

we give a non-recursive expression:

∫ cosn(θ−µ)dθ = sin(θ−µ)
⎛
⎝

⌊
n
2
⌋+mod n

2
−1

∑
i=0

(cosn−2i−1(θ − µ) ∏
2i
j=0(n − j)

∏ij=0(n − 2j)2
)
⎞
⎠
∀n such that n = 2m+1

with m ∈ N. This materializes out of the observation of the numerical regularities that appear

when “unfolding” the recursive expression:

∫ cosn(θ − µ)dθ = sin(θ − µ) cosn−1(θ − µ)
n

+ n − 1

n ∫ cosn−2(θ − µ)dθ

= sin(θ − µ) cosn−1(θ − µ)
n

+ n − 1

n
( sin(θ − µ) cosn−3(θ − µ)

n − 2
+ n − 3

n − 2 ∫ cosn−4(θ − µ)dθ)

= 1

n
sin(θ − µ) cosn−1(θ − µ) + n − 1

n(n − 2) sin(θ − µ) cosn−3(θ − µ)

+ (n − 1)(n − 3)
n(n − 2)(n − 4) sin(θ − µ) cosn−5(θ − µ) + (n − 1)(n − 3)(n − 5)

n(n − 2)(n − 4) ∫ cosn−6(θ − µ)dθ

They can be primary generalized using the expression

sin(θ − µ)
⎛
⎝

⌊
n
2
⌋+mod n

2
−1

∑
i=0

(cosn−2i−1(θ − µ) ∏
2i
j=0(n − j)

∏ij=0(n − 2j)2
)
⎞
⎠

However, while this first expression does suffice for odd n, an extra term appears if n is

even as we reach the point at which the term ∫ cos0(θ−µ)dθ is computed. This can be reflected

properly by adding an addend that takes into account the parity of the formula. In our case, it

has the form:
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g(n,x) = (−1)nh(x) + h(x)
2

= ((−1)n + 1)h(x)
2

,

where ∀n ∈ N such that n = 2m and m ∈ N, g(n,x) = h(x) and 0 otherwise.

In a shorter notation and adding the parity term, the expression becomes

∫ cosn(θ − µ)dθ = sin(θ − µ)
⎛
⎝

⌊
n
2
⌋+mod n

2
−1

∑
i=0

⎛
⎝

cosn−2i−1(θ − µ)
2i

∏
j=0

(n − j)−(−1)
j⎞
⎠
+

((−1)n + 1)∏⌊
n
2
⌋+mod n

2
−1

j=0 (n − j)−(−1)
j

(θ − µ)
2

⎞
⎟
⎠
.

Thus, substituting in (A.1) we obtain the final expression for ∫ eκ cos(θ−µ)dθ.

1.3 Proof of Theorem 1

The theorem is entirely derived by means of the trigonometrical equality:

κ2 cos(x) + c2 sin(x)

= [κ2 cos(arctan( c2
κ2

)) + c2 sin(arctan( c2
κ2

))] cos(x − arctan( c2
κ2

)) .

(2)

From the equality we can express the exponent of the conditional distribution in (11) using

a formula of the type κ′ cos(x − µ′). Now if we consider that

κ2 cos(arctan( c2
κ2

)) + c2 sin(arctan( c2
κ2

)) =
κ2 + c22

κ2√
1 + ( c2

κ2
)
2
=
√
κ2
2 + c22,

then (A.1) becomes

κ2 cos(x) + c2 sin(x) =
√
κ2
2 + c22 cos(x − arctan( c2

κ2
)) . (3)

Thus, we can adapt the truncated conditional distribution to the univariate truncated von Mises

exponent by properly selecting:

κ′ =
√
κ2
2 + c22

µ′ = µ2 + arctan( c2
κ2

) ,

where c2 = λ sin(θ1 − µ1).
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1.4 Proof of Theorem 2

We consider

fumtvM(θ1′) = eκ1 cos(θ1′ ) ∫
b2

a2

eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2 (4)

to be the unnormalized marginal truncated von Mises distribution. For simplicity’s sake, the

proof is developed in a linear context (using classical intervals [x,y], with their associated con-

straints, instead of circular intervals Ox,y), whose extension to the circle is deemed as known

and trivial at this point. Also, unless otherwise specified, λ > 0 is assumed and a2, b2 truncation

parameters are referred to simply as the truncation parameters. The proof is as follows:

(a) Determination of the derivative expression and the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function

(b) Analysis of the marginal expression with focus on the case of symmetrical truncation

parameters in order to prove cases 1 and 2

(c) Further analysis for the case of non-symmetrical truncation parameters, determining all

distinctive behaviors of the integral subterm of the marginal expression

(d) Monotony study divided by cases of the circular distance of the truncation parameters

w.r.t. µ2 and subintervals of the θ1′ ∈ [−π,π] interval in order to prove case 3. Case 4 is

proven by ruling out every other possible outcome.

In (a), T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) is derived from a particularization of the second derivative of the

marginal function. The meaning of the value of the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function is clarified for the

symmetrical truncation parameters. In (b) and (c), the analysis aims to characterize the be-

havior of the integral term of the marginal distribution. In (b), the analysis will first observe

the particularities of the integral term, especially, how θ1′ modifies the location and concentra-

tion parameters of the von Mises distribution inside the integral, and then derive from it some

properties and insights will also be used for the proof of case 3. We then prove how thsese

variations affect the area under the curve and their relationships to the truncation parameters.

Finally, partial and total analyses of the derivate of the integral term are performed, concluding

the proof of the first two cases of the theorem. In (c), an analysis of the derivate of the integral

term for non-symmetrical truncation parameters w.r.t. µ2 is performed. Using the previous

insights, the analysis first determines the cases where, according to the truncation parameter

values, the marginal integral term follows a unimodal distribution. The analysis then focuses on

the remaining cases in order to prove that the global maximum of the integral term necessarily

appears at the associated point of the truncation parameter (−π
2

for a2 and π
2

for b2), which

has the largest circular distance w.r.t. µ2. Also, in the bi-modal case for non-symmetrical trun-

cation parameters, we analyze how the minimum comprehended between the modes appears in

the π
2
−length interval with 0 as an extrema associated with the truncation parameter that has

the smallest circular distance w.r.t. µ2 ([−π
2
,0] for a2 and [0, π

2
] for b2), and its relationship

with the minimum that appears in [−π,−π
2
] for the associated interval [−π

2
,0] or in [π

2
, π] for
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the associated interval [0, π
2
]. In (d), the monotony study identifies all different behaviors and

the subinterval in which more than one critical point can occur, thus enabling us to detect

bi-modality with different valued maxima with the proposed criteria.

(a) By differentiating fumtvM(θ1′) w.r.t. θ1 we obtain:

f ′umtvM(θ1′) = −κ1 sin(θ1′)eκ1 cos(θ1′ ) ∫
b2

a2

eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2

+λ cos(θ1′)eκ1 cos(θ1′ ) ∫
b2

a2

sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2

= eκ1 cos(θ1′ ) (−κ1 sin(θ1′)∫
b2

a2

eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2

+λ cos(θ1′)∫
b2

a2

sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2) . (5)

We observe that

f ′umtvM(0) = λeκ1 (∫
b2

a2

sin(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2)

= λ

κ2
eκ1 (eκ2 cos(a2−µ2) − eκ2 cos(b2−µ2)) . (6)

If and only if cos(b2 − µ2) = cos(a2 − µ2), it follows that fumtvM(θ1′) has a critical point at µ1.

Solving and assessing the equation f ′′umtvM(θ1′) = 0 in order to obtain information about

the curvature for θ1′ = 0 results in

−κ1

λ2
+ ∫

b2
a2

sin2(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

= 0,

from which we can define the T (⋅, ⋅, ⋅, ⋅, ⋅, ⋅) function as

T (λ,µ2, κ1, κ2, a2, b2) = −
κ1

λ2
+ ∫

b2
a2

sin2(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2

∫
b2
a2
eκ2 cos(θ2−µ2)dθ2

. (7)

However, we still need to understand whether Equation (A.7) is sufficient to distinguish between

cases 1 and 2 established in the theorem.

(b) In order to understand the truncated marginal behavior, if we rewrite the integral term

in fumtvM(θ1′) by means of Equation (A.3) we have

fumtvM(θ1′) = eκ1 cos(θ1′ ) ∫
b2

a2

e

√

κ2
2
+(λ sin(θ1′ ))2 cos(x2−µ2−arctan(

λ sin(θ1′ )
κ2

))

dθ2.

It is apparent that the integral term computes the area of location-concentration varying von

Mises distributions as ∫
b2
a2
ftvM (θ2;µ2 + arctan (λ sin(θ1′ )

κ2
) ,

√
κ2
2 + (λ sin(θ1′))2)dθ2. If we con-

sider the location variations over [−π,π] by means of the sin(θ1′) function, the distribution in

the integrand is displaced over the interval [−arctan ( λ
κ2

) ,0] when sin(θ1′) < 0 (from displace-

ment 0 to displacement −arctan ( λ
κ2

) when θ1′ ∈ [−π,−π
2
] and from displacement −arctan ( λ

κ2
)

to displacement 0 when θ1′ ∈ [−π
2
,0] ), and over the interval [0,arctan ( λ

κ2
)] when sin(θ1′) > 0
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(similary for θ1′ ∈ [0, π
2
] and θ1′ ∈ [π

2
, π]). If we consider concentration variations, we can regard

the source of bi-modality of the integral term as the
√
κ2
2 + (λ sin(θ1′))2 subterm, given that

sin2(θ1′) is a π−periodic solely positive function. Additionally, from θ1′ = 0 to θ1′ = π
2

and

from θ1′ = −π to θ1′ = −π2 , the concentration parameter grows from its minimum value κ2 to its

maximum value
√
κ2
2 + λ2, while it decreases from its maximum to its minimum value in the

cases of θ1′ from −π
2

to 0 and from π
2

to π.

The proof then follows trivially by noting that, truncation parameters aside, the function’s

behavior in [µ2 − π,µ2] can be considered symmetrical w.r.t. µ2 to the function’s behavior in

[µ2, µ2 + π]. The symmetry w.r.t. µ2 in the truncation parameters selects two subintervals of

symmetrical behavior w.r.t. µ1, thus producing a function that is symmetrical w.r.t. µ1.

Further analyzing the integral term we look to determine the critical points and understand

how the selection of truncation parameters affects the integral term behaviour. We take

v1(θ1′) = ∫
b2

a2

eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2

v2(θ1′) = ∫
b2

a2

sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)dθ2,

where

λ cos(θ1′)v2(θ1′) = v′1(θ1′).

We now want to analyze v2(θ1′) as it is part of the derivate expression of v1(θ1′). Taking the

integrand of v2(θ1′) to be

fv2(θ2; θ1′) = sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)

Note that, in fv2(θ2; θ1′), the argument is θ2 since it creates the area that is to be computed

in v2(θ1′). θ1′ can be considered here as a modifying parameter. The fv2(θ2; θ1′) function

comprises the product of a strictly positive function e(⋅) and a sin(⋅) function. Therefore, the

sign of fv2(θ2; θ1′) is solely determined by the sign of the sin(⋅) function. To be precise, if

θ2 ∈ [µ2 − π,µ2] then fv2(θ2; θ1′) ≤ 0 and if θ2 ∈ [µ2, µ2 + π] then fv2(θ2; θ1′) ≥ 0. Therefore, we

can subdivide v2(θ1′) as

v2(θ1′) = ∫
µ2

a2

fv2(θ2; θ1′)dθ2 + ∫
b2

µ2

fv2(θ2; θ1′)dθ2,

where the first addend is a solely negative term and the second addend is a solely positive term

provided that µ2 ∈ (a2, b2). In the symmetry case, if θ1′ = 0 we have

−∫
µ2

a2

fv2(θ2; 0)dθ2 = ∫
b2

µ2

fv2(θ2; 0)dθ2; (8)

for θ1′ ∈ (0, π) we have

−∫
µ2

a2

fv2(θ2; θ1′)dθ2 < ∫
b2

µ2

fv2(θ2; θ1′)dθ2; (9)
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and for θ1′ ∈ (−π,0) we have

−∫
µ2

a2

fv2(θ2; θ1′)dθ2 > ∫
b2

µ2

fv2(θ2; θ1′)dθ2 (10)

Intuitively, the displaced exponential w.r.t. the µ2 term increases all the values of either the

negative or the positive curve of the sin(θ2 −µ2) function and reduces the curve of the opposite

sign in less amount, therefore defining the sign and the value of v2(θ1′). Formally, this to

hold, we need to prove that ∀θ1′ ∈ (−π,0) fv2(θ2; 0) − fv2(θ2; θ1′) > 0 if θ2 ∈ (µ2 − π,µ2) and

∀θ1′ ∈ (−π,0) fv2(θ2; 0) − fv2(θ2; θ1′) < 0 if θ2 ∈ (µ2, µ2 + π) for the negative displacement, and

an analogous statement for θ1′ ∈ (0, π) positive displacement. For the negative displacement

case, it follows that

sin(θ2 − µ2)eκ2 cos(θ2−µ2) − sin(θ2 − µ2)eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2) > 0

sin(θ2 − µ2) (eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2)) > 0.

As sin(θ2 − µ2) < 0 in θ2 ∈ [µ2 − π,µ2] it suffices if

eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2) < 0

in θ2 ∈ [µ2 − π,µ2]. We proceed as follows:

eκ2 cos(θ2−µ2) − eκ2 cos(θ2−µ2)+λ sin(θ1′ ) sin(θ2−µ2) < 0

e−λ sin(θ1′ ) sin(θ2−µ2) < 1

−λ sin(θ1′) sin(θ2 − µ2) < 0

and, since we have specified θ1′ ∈ (−π,0) and then sin(θ1′) < 0, we have −λ sin(θ1′) > 0. There-

fore, the sign of −λ sin(θ1′) sin(θ2 − µ2) follows from that of sin(θ2 − µ2). This proves the

statement for both θ2 intervals in the case of negative displacement. The proof for positive

displacement is analogous.

This result implies that the selection of truncation parameters that are symmetrical w.r.t.

µ2 does not change the monotony of v1(θ1′). More generally, this result implies that no selection

of truncation parameters changes the monotonicity of v2(θ1′), that is, increasing in [−π
2
, π
2
] and

decreasing otherwise.

Since (A.8), (A.9) and (A.10) hold, we can now perform the sign and critical points analysis

of λ cos(θ1′)v2(θ1′) to obtain that v1(θ1′) follows the monotony of sin2(θ1′) for any a2, b2 such

that cos(b2 − µ2) = cos(a2 − µ2), with critical points {−π
2
,0, π

2
}. Therefore, in Equation (A.4),

unimodal/bimodal observed distributions are “decided” for this case by the product of v1(θ1′)
with eκ1 cos(θ1′ ).

Therefore, if T (λ,µ2, κ1, κ2, a2, b2) > 0 then fumtvM(θ1′) presents a minimum critical point

at µ1 and the distribution has two equal symmetrical maxima in [−π
2
, π
2
] (the maxima location

interval can be proven as a result of monotony and sign comparisons between v1(θ1′) and

eκ1 cos(θ1′ )). Respectively, if T (λ,µ2, κ1, κ2, a2, b2) < 0 then fumtvM(θ1′) presents a maximum
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critical point and the distribution is unimodal. This result generalizes the outcome for the

non-truncated case to symmetrical parameters other than a2, b2 such that b2 − a2 = 2π (Singh

(2002)). This suffices to prove cases 1 and 2 of the theorem.

(c) For case 3 we want to observe the behavior of the marginal distribution for different

cases of circular distances of a2, b2 truncation parameters w.r.t. µ2. Thus, we need knowledge

about the subterm v2(θ1′) when a2, b2 truncation parameters are not symmetrical w.r.t. µ2 in

order to reach useful results. We will address this point first.

If we now observe λ cos(θ1′)v2(θ1′) = 0 for non-symmetrical parameters we can as before,

isolate two critical points:

θ1′ = −π
2
,

θ1′ = π

2

and a third critical point at some θ1′ such that − ∫
µ2

a2
fv2(θ2; θ1′) + ∫

b2
µ2
fv2(θ2; θ1′) = 0 if a2, b2

are not truncation parameters that satisfy any of the following conditions:

(i) a2, b2 ∈ [µ2, µ2 + π] as then v2(θ1′) > 0 ∀θ1′ ∈ [−π,π]

(ii) a2, b2 ∈ [µ2 − π,µ2] as then v2(θ1′) < 0 ∀θ1′ ∈ [−π,π]

(iii) µ2 ∈ (a2, b2) such as − ∫
µ2

a2
fv2′ (θ2;−π

2
)dθ2 ≤ ∫

b2
µ2
fv2′ (θ2;−π

2
)dθ2 as then v2(θ1′) > 0 ∀θ1′ ∈

[−π,π]

(iv) µ2 ∈ (a2, b2) such as ∫
b2
µ2
fv2′ (θ2; π

2
)dθ2 ≤ − ∫

µ2

a2
fv2′ (θ2; π

2
)dθ2 as then v2(θ1′) < 0 ∀θ1′ ∈

[−π,π].

Notice that from the viewpoint of truncation parameters, cases (iii) and (iv) can be con-

sidered opposite. Also, as highlighted by the previous analysis, it is clear that case (iii) im-

plies cos(b2 − µ2) < cos(a2 − µ2) (more intuitively, cos(b2 − µ2) ≪ cos(a2 − µ2) ) and case (iv)

cos(b2 −µ2) > cos(a2 −µ2) (more intuitively, cos(b2 −µ2) ≫ cos(a2 −µ2) ). We will refer to cases

(iii) and (iv) as the strong lower parameter cases.

Therefore, by manipulating a2, b2 truncation parameters, it is possible to reshape v1(θ1′)
to exhibit a minimum in −π

2
and a maximum in π

2
if case (i) or (iii) applies or to exhibit a

maximum in −π
2

and a minimum in π
2

if case (ii) or (iv) applies. In these cases, v1(θ1′) is an

integral term with unimodal behavior.

It follows that any other case for non-symmetrical truncation parameters implies µ2 ∈
(a2, b2), and v1(θ1′) exhibits two differentiated maxima in −π

2
and π

2
. Also, v2(−π2 ) < 0 and

v2(π2 ) > 0. If we examine the case of θ1′ = 0 for truncation parameters a2, b2 such that cos(b2 −
µ2) > cos(a2−µ2) then − ∫

µ2

a2
fv2(θ2; 0)dθ2 > ∫

b2
µ2
fv2(θ2; 0)dθ2 and therefore v2(θ1′) = 0 for some

θ∗1′ ∈ [0, π
2
] such that v2(θ1′) < 0 if θ1′ ∈ [0, θ∗1′) and v2(θ1′) > 0 if θ1′ ∈ (θ∗1′ , π2 ]. It follows that

this also impliesthe existence of another minimum in [π
2
, π] as v2(θ1′) > 0 ∀θ1′ ∈ [π

2
, π−θ∗1′) and

v2(θ1′) < 0 ∀θ1′ ∈ (π − θ∗1′ , π]. Similarly, if cos(b2 − µ2) < cos(a2 − µ2) then − ∫
µ2

a2
fv2(θ2; 0)dθ2 <

∫
b2
µ2
fv2(θ2; 0)dθ2 and therefore v2(θ1′) = 0 for some θ∗1′ ∈ [−π

2
,0] and −π − θ∗1′ ∈ [−π,−π

2
], that
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is, the minimum of v1(θ1′) that appears in [−π
2
, π
2
] is more precisely located in the π

2
−length

interval associated with the truncation parameter that presents the smallest circular distance

w.r.t. µ2 and imples an additional minimum located in the contiguous π
2
−length interval more

distant from θ1′ = 0.

Additionally, the global maximum of the two differentiated maxima is that of the π
2
−length

interval associated with the truncation parameter that has the largest circular distance w.r.t.

µ2. We can prove this by comparing both maxima as follows:

v1 (−
π

2
) − v1 (

π

2
) > 0 if cos(b2 − µ2) > cos(a2 − µ2).

Thus if we take κ′ =
√
κ2
2 + (λ)2 we have

∫
b2

a2

e
κ′ cos(θ2−µ2−arctan(−

λ
κ2

))

dθ2 − ∫
b2

a2

e
κ′ cos(θ2−µ2−arctan(

λ
κ2

))

dθ2 > 0.

Expressing this by means of the distribution function we obtain

[I(θ,−µ2 − arctan(− λ
κ2

) , κ′)]
b2

a2

− [I(θ,−µ2 − arctan( λ
κ2

) , κ′)]
b2

a2

> 0. (11)

Clearly, I(θ, µ, κ) is strictly increasing and e
κ′ cos(θ2−µ2−arctan(−

λ
κ2

))

is symmetrical to

e
κ′ cos(θ2−µ2−arctan(

λ
κ2

))

w.r.t. µ2. Therefore

1.

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)]
µ2

2µ2−b2

= [I(θ,−µ2 − arctan( λ
κ2

) , κ′)]
b2

µ2

2.

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)]
2µ2−a2

µ2

= [I(θ,−µ2 − arctan( λ
κ2

) , κ′)]
µ2

a2

taking

[I(θ,−µ2 − arctan(−λ
κ2

) , κ′)] = Ie1(θ)

[I(θ,−µ2 − arctan( λ
κ2

) , κ′)] = Ie2(θ),

we can rewrite inequation (A.11) as

[Ie1(θ)]µ2
a2
+ [Ie1(θ)]b2µ2

− [Ie2(θ)]µ2
a2
− [Ie2(θ)]b2µ2

> 0,

substituting,

[Ie1(θ)]a2µ2
+ [Ie1(θ)]µ2

b2
− [Ie1(θ)]2µ2−a2

µ2
− [Ie1(θ)]µ2

2µ2−b2
> 0

−Ie1(a2) + Ie1(b2) − Ie1(2µ2 − a2) + Ie1(2µ2 − b2) > 0

[Ie1(θ)]2µ2−b2
a2

− [Ie1(θ)]2µ2−a2
b2

> 0,
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that is, the inequation reduces to the comparison between the area in two subintervals of equal

length that are symmetrical w.r.t. µ2. By this symmetry and by the fact that the mode is in

(−π
2
,0) and the anti-mode in (π

2
, π) in e

κ′ cos(θ2−µ2−arctan(−
λ
κ2

))

, we can safely conclude that the

inequation holds thus proving the statement. Therefore, for any marginal truncated distribution,

the global maximum in the integral term is located in θ1′ = π
2

if cos(a2 − µ2) > cos(b2 − µ2) and

in θ1′ = −π2 if cos(a2 − µ2) < cos(b2 − µ2).
At this point all behaviors for critical points and monotony of v1(θ1′) have been charac-

terized.

Analogously to the non-truncated case, the effect of the eκ1 cos(θ1′ ) subterm has to be taken

into consideration in order to determine the shape of the distribution. To do this, we perform

a monotony study that incorporates all previous developments.

(d) After conducting the study on v2(θ1′) and v1(θ1′), we proceed by equating function

(A.5) to zero, resulting in

−κ1 sin(θ1′)v1(θ1′) + λ cos(θ1′)v2(θ1′) = 0.

If we consider the cases where a2, b2 ∈ [µ2, µ2 + π] or a2 is a strong lower parameter w.r.t b2 we

have:

1. v2(θ1′) > 0 ∀θ1′ ∈ [−π,π].

2. If θ1′ ∈ [−π,−π
2
], then sin(θ1′) ≤ 0 and cos(θ1′) ≤ 0. In this case, at least a minimum and

a critical point of fumtvM(θ1′) can be found in the examined interval as shown by:

f ′umtvM(−π) = e−κ1 (−λ∫
b2

a2

sin(θ2 − µ2)eκ2 cos(θ2−µ2)dθ2)

f ′umtvM (−π
2
) = κ1 ∫

b2

a2

eκ2 cos(θ2−µ2)−λ sin(θ2−µ2)dθ2 > 0,

where f ′umtvM(−π) < 0. Notice that if a2, b2 ∈ [µ2, µ2 + π] the critical point neccesarily

exists regardless of the effect of the other parameters.

3. If θ1′ ∈ [−π
2
,0], then sin(θ1′) ≤ 0 and cos(θ1′) ≥ 0. fumtvM(θ1′) exhibits a monotonic

increasing behavior, as all terms involved in the expression are positive.

4. If θ1′ ∈ [0, π
2
], then sin(θ1′) ≥ 0 and cos(θ1′) ≥ 0. Here, at least a maximum and a critical

point can be found in the interval by considering Equation (A.6), where f ′umtvM(0) > 0,

and

f ′umtvM (π
2
) = −κ1 ∫

b2

a2

eκ2 cos(θ2−µ2)−λ sin(θ2−µ2)dθ2 < 0.

5. If θ1′ ∈ [π
2
, π], then sin(θ1′) ≥ 0 and cos(θ1′) ≤ 0. fumtvM(θ1′) exhibits a monotonic

decreasing behavior, as all terms involved in the expression are negative.
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Therefore, for this case, the distribution exhibits critical points in two non-contiguous

intervals. By the previous developments, such a distribution of critical points would only cor-

respond to the unimodal case and also, as the contribution of eκ1 cos(θ1′ ) is symmetrical w.r.t.

µ1 or θ1′ = 0, the marginal function could only have one global maximum in θ1′ ∈ [0, π
2
] interval

and one global minimum in θ1′ ∈ [−π,−π
2
].

The case where a2, b2 ∈ [µ2 − π,µ2] or b2 is a strong lower parameter w.r.t a2 can be

understood as “symmetric behavior w.r.t µ1”, since the results for θ1′ ∈ [−π,−π
2
] now hold for

θ1′ ∈ [π
2
, π] and the results for θ1′ ∈ [−π

2
,0] now hold for θ1′ ∈ [0, π

2
]. This property, general to

the [−π,π] interval, guarantees that in our case, it suffices to determine the behavior for one of

the two remaining cases to completely determine the behavior of the marginal function.

We now consider the remaining parameter configurations that satisfy cos(b2−µ2) > cos(a2−
µ2).

1. If θ1′ ∈ [−π,−π
2
], then v2(θ1′) < 0, thus resulting in fumtvM(θ1′), which exhibits a strictly

increasing behavior, as all terms involved in the expression are now positive.

2. If θ1′ ∈ [−π
2
,0], then v2(θ1′) < 0. In this case, after performing sign comparisons on the

extrema, there is at least one critical point and one maximum in the interval.

3. If θ1′ ∈ [0, π
2
], v2(θ1′) < 0 ∀θ1′ ∈ [0, θ∗1′) and v2(θ1′) > 0 ∀θ1′ ∈ [θ∗1′ , π2 ). Therefore, no

critical point exists in [0, θ∗1′), since fumtvM(θ1′) exhibits a decreasing behavior and all

terms involved in the expression are negative. In [θ∗1′ , π2 ), no, one or two critical points

can occur as both sign and monotony comparisons were not conclusive.

4. If θ1′ ∈ [π
2
, π], then v2(θ1′) > 0 ∀θ1′ ∈ [π

2
, π − θ∗1′) and v2(θ1′) < 0 ∀θ1′ ∈ (π − θ∗1′ , π].

Therefore, no critical point exists in [π
2
, π − θ∗1′) since fumtvM(θ1′) exhibits a decreasing

behavior as all terms involved in the expression are negative. In (π−θ∗1′ , π], after perform-

ing sign comparisons on the extrema, at least one critical point can occur. Therefore, for

this case, the distribution has three contiguous intervals containing critical points. Since

clearly no more than two critical points are allowed in a π
2
−length interval, the case with

two possible critical points in [θ∗1′ , π2 ) is the case of bi-maximality (differentiated max-

ima) with a minimum and a maximum in θ1′ ∈ [θ∗1′ , π2 ) and a maximum in θ1′ ∈ [−π
2
,0].

Complementarily, this distribution of critical points “corresponds” to the bi-maximal (dif-

ferentiated maxima) behavior of v1(θ1′), and, therefore, the critical point in θ1′ ∈ [−π
2
,0]

is necessarily a maximum, and the critical point in [π
2
, π] is necessarily a minimum. Thus,

it can be concuded that in the case of bimodality, the interval associated with the trunca-

tion parameter that has the shortest circular distance w.r.t. µ2 contains the two critical

points, whereas the interval associated with the truncation parameter that has the largest

circular distance w.r.t. µ2 contains the global maximum.

If λ < 0, the proof follows trivially by noting that the displacement caused by the sin(⋅)
function in the exponent that appears in the v1(θ1′) subterm is the opposite. This in turn
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causes the distribution to have an opposite symmetrical behaviour w.r.t. µ1. This suffices to

prove case 3 of the theorem. Case 4 can also be proven with the developed theory. However,

it can additionally be proven by ruling out any other possible outcome, considering the three

previously developed cases.


